Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = red queen hypothesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7774 KiB  
Article
A Russian Doll of Resistance: Nested Gains and Losses of Venom Immunity in Varanid Lizards
by Uthpala Chandrasekara, Marco Mancuso, Lorenzo Seneci, Lachlan Bourke, Dane F. Trembath, Joanna Sumner, Christina N. Zdenek and Bryan G. Fry
Int. J. Mol. Sci. 2024, 25(5), 2628; https://doi.org/10.3390/ijms25052628 - 23 Feb 2024
Cited by 1 | Viewed by 6218
Abstract
The interplay between predator and prey has catalyzed the evolution of venom systems, with predators honing their venoms in response to the evolving resistance of prey. A previous study showed that the African varanid species Varanus exanthematicus has heightened resistance to snake venoms [...] Read more.
The interplay between predator and prey has catalyzed the evolution of venom systems, with predators honing their venoms in response to the evolving resistance of prey. A previous study showed that the African varanid species Varanus exanthematicus has heightened resistance to snake venoms compared to the Australian species V. giganteus, V. komodoensis, and V. mertensi, likely due to increased predation by sympatric venomous snakes on V. exanthematicus. To understand venom resistance among varanid lizards, we analyzed the receptor site targeted by venoms in 27 varanid lizards, including 25 Australian varanids. The results indicate an active evolutionary arms race between Australian varanid lizards and sympatric neurotoxic elapid snakes. Large species preying on venomous snakes exhibit inherited neurotoxin resistance, a trait potentially linked to their predatory habits. Consistent with the ‘use it or lose it’ aspect of venom resistance, this trait was secondarily reduced in two lineages that had convergently evolved gigantism (V. giganteus and the V. komodoensis/V. varius clade), suggestive of increased predatory success accompanying extreme size and also increased mechanical protection against envenomation due to larger scale osteoderms. Resistance was completely lost in the mangrove monitor V. indicus, consistent with venomous snakes not being common in their arboreal and aquatic niche. Conversely, dwarf varanids demonstrate a secondary loss at the base of the clade, with resistance subsequently re-evolving in the burrowing V. acanthurus/V. storri clade, suggesting an ongoing battle with neurotoxic predators. Intriguingly, within the V. acanthurus/V. storri clade, resistance was lost again in V. kingorum, which is morphologically and ecologically distinct from other members of this clade. Resistance was also re-evolved in V. glebopalma which is terrestrial in contrast to the arboreal/cliff dwelling niches occupied by the other members of its clade (V. glebopalma, V. mitchelli, V. scalaris, V. tristis). This ‘Russian doll’ pattern of venom resistance underscores the dynamic interaction between dwarf varanids and Australian neurotoxic elapid snakes. Our research, which included testing Acanthophis (death adder) venoms against varanid receptors as models for alpha-neurotoxic interactions, uncovered a fascinating instance of the Red Queen Hypothesis: some death adders have developed more potent toxins specifically targeting resistant varanids, a clear sign of the relentless predator–prey arms race. These results offer new insight into the complex dynamics of venom resistance and highlight the intricate ecological interactions that shape the natural world. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Animal Toxins, Venoms and Antivenoms 2.0)
Show Figures

Figure 1

19 pages, 568 KiB  
Review
Geographical Parthenogenesis in Alpine and Arctic Plants
by Elvira Hörandl
Plants 2023, 12(4), 844; https://doi.org/10.3390/plants12040844 - 13 Feb 2023
Cited by 15 | Viewed by 3143
Abstract
The term “Geographical parthenogenesis” describes the phenomenon that asexual organisms usually occupy larger and more northern distribution areas than their sexual relatives, and tend to colonize previously glaciated areas. Several case studies on alpine and arctic plants confirm the geographical pattern, but the [...] Read more.
The term “Geographical parthenogenesis” describes the phenomenon that asexual organisms usually occupy larger and more northern distribution areas than their sexual relatives, and tend to colonize previously glaciated areas. Several case studies on alpine and arctic plants confirm the geographical pattern, but the causal factors behind the phenomenon are still unclear. Research of the last decade in several plant families has shed light on the question and evaluated some of the classical evolutionary theories. Results confirmed, in general, that the advantages of uniparental reproduction enable apomictic plants to re-colonize faster in larger and more northern distribution areas. Associated factors like polyploidy seem to contribute mainly to the spatial separation of sexual and asexual cytotypes. Ecological studies suggest a better tolerance of apomicts to colder climates and temperate extremes, whereby epigenetic flexibility and phenotypic plasticity play an important role in occupying ecological niches under harsh conditions. Genotypic diversity appears to be of lesser importance for the distributional success of asexual plants. Classical evolutionary theories like a reduced pressure of biotic interactions in colder climates and hence an advantage to asexuals (Red Queen hypothesis) did not gain support from studies on plants. However, it is also still enigmatic why sexual outcrossing remains the predominant mode of reproduction also in alpine floras. Constraints for the origin of apomixis might play a role. Interestingly, some studies suggest an association of sexuality with abiotic stresses. Light stress in high elevations might explain why most alpine plants retain sexual reproduction despite other environmental factors that would favor apomixis. Directions for future research will be given. Full article
Show Figures

Figure 1

13 pages, 2100 KiB  
Article
Infection with a Recently Discovered Gammaherpesvirus Variant in European Badgers, Meles meles, is Associated with Higher Relative Viral Loads in Blood
by Ming-shan Tsai, Sarah François, Chris Newman, David W. Macdonald and Christina D. Buesching
Pathogens 2022, 11(10), 1154; https://doi.org/10.3390/pathogens11101154 - 6 Oct 2022
Viewed by 2157
Abstract
Herpesviruses are ubiquitous pathogens infecting most animals. Although host immunity continually coevolves to combat virulence, viral variants with enhanced transmissibility or virulence occasionally emerge, resulting in disease burdens in host populations. Mustelid gammaherpesvirus 1 (MusGHV-1) is the only herpesvirus species identified thus far [...] Read more.
Herpesviruses are ubiquitous pathogens infecting most animals. Although host immunity continually coevolves to combat virulence, viral variants with enhanced transmissibility or virulence occasionally emerge, resulting in disease burdens in host populations. Mustelid gammaherpesvirus 1 (MusGHV-1) is the only herpesvirus species identified thus far in European badgers, Meles meles. No MusGHV-1 associated pathomorbidity has been reported, but reactivation of MusGHV-1 in genital tracts is linked to impaired female reproductive success. An analysis of a short sequence from the highly conserved DNA polymerase (DNApol) gene previously identified two variants in a single host population. Here we compared genetic variance in blood samples from 66 known individuals of this same free-ranging badger population using a partial sequence comprising 2874 nucleotides of the DNApol gene, among which we identified 15 nucleotide differences resulting in 5 amino acid differences. Prevalence was 86% (59/66) for the common and 17% (11/66) for the novel variant, with 6% (4/66) of badgers presenting with coinfection. MusGHV-1 variants were distributed unevenly across the population, with individuals infected with the novel genotype clustered in 3 of 25 contiguous social groups. Individuals infected with the novel variant had significantly higher MusGHV-1 viral loads in their blood (p = 0.002) after adjusting for age (juveniles > adults, p < 0.001) and season (summer > spring and autumn, p = 0.005; mixed-effect linear regression), likely indicating higher virulence of the novel variant. Further genome-wide analyses of MusGHV-1 host resistance genes and host phenotypic variations are required to clarify the drivers and sequelae of this new MusGHV-1 variant. Full article
Show Figures

Figure 1

12 pages, 717 KiB  
Review
Forest Climax Phenomenon: An Invariance of Scale
by Raimundas Petrokas
Forests 2020, 11(1), 56; https://doi.org/10.3390/f11010056 - 2 Jan 2020
Cited by 8 | Viewed by 4449
Abstract
We can think of forests as multiscale multispecies networks, constantly evolving toward a climax or potential natural community—the successional process-pattern of natural regeneration that exhibits sensitivity to initial conditions. This is why I look into forest succession in light of the Red Queen [...] Read more.
We can think of forests as multiscale multispecies networks, constantly evolving toward a climax or potential natural community—the successional process-pattern of natural regeneration that exhibits sensitivity to initial conditions. This is why I look into forest succession in light of the Red Queen hypothesis and focus on the key aspects of ecological self-organisation: dynamical criticality, evolvability and intransitivity. The idea of the review is that forest climax should be associated with habitat dynamics driven by a large continuum of ecologically equivalent time scales, so that the same ecological conclusions could be drawn statistically from any scale. A synthesis of the literature is undertaken in order to (1) present the framework for assessing habitat dynamics and (2) present the types of successional trajectories based on tree regeneration mode in forest gaps. In general, there are four types of successional trajectories within the process-pattern of forest regeneration that exhibits sensitivity to initial conditions: advance reproduction specialists, advance reproduction generalists, early reproduction generalists and early reproduction specialists. A successional trajectory is an expression of a fractal connectivity among certain patterns of natural regeneration in the multiscale multispecies networks of landscape habitats. Theoretically, the organically derived measures of pattern diversity, integrity and complexity, determined by the rates of recruitment, growth and mortality of forest tree species, are the means to test the efficacy of specific interventions to avert the disturbance-related decline in forest regeneration. That is of relevance to the emerging field of biocomplexity research. Full article
13 pages, 440 KiB  
Review
Patterns of Evolutionary Speed: In Search of a Causal Mechanism
by Len N. Gillman and Shane D. Wright
Diversity 2013, 5(4), 811-823; https://doi.org/10.3390/d5040811 - 2 Dec 2013
Cited by 12 | Viewed by 7050
Abstract
The “integrated evolutionary speed hypothesis” proposes that the rate of genetic evolution influences all major biogeographical patterns of diversity including those associated with temperature, water availability, productivity, spatial heterogeneity and area. Consistent with this theory, rates of genetic evolution correspond with patterns of [...] Read more.
The “integrated evolutionary speed hypothesis” proposes that the rate of genetic evolution influences all major biogeographical patterns of diversity including those associated with temperature, water availability, productivity, spatial heterogeneity and area. Consistent with this theory, rates of genetic evolution correspond with patterns of diversity and diversification. Here we review the mechanisms that have been proposed to explain these biogeographic patterns in rates of genetic evolution. Tests of several proposed mechanisms have produced equivocal results, whereas others such as those invoking annual metabolic activity, or a “Red Queen” effect, remain unexplored. However, rates of genetic evolution have been associated with both productivity mediated rates of germ cell division and active metabolic rates and these explanations therefore justify further empirical investigation. Full article
(This article belongs to the Special Issue Genetic Diversity and Molecular Evolution)
Show Figures

Graphical abstract

Back to TopTop