Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = readily-dispersible clay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3863 KB  
Article
Zeta Potential as a Key Indicator of Network Structure and Rheological Behavior in Smectite Clay Dispersions
by Hiroshi Kimura, Haruka Tanabe and Susumu Shinoki
Fluids 2025, 10(7), 178; https://doi.org/10.3390/fluids10070178 - 6 Jul 2025
Cited by 3 | Viewed by 1809
Abstract
Smectite clay minerals are known to readily form thixotropic physical gels in aqueous media, even at low volume fractions. Although the rheological properties of these gels are closely related to the microstructure of the network, the influence of the clay’s physicochemical characteristics remains [...] Read more.
Smectite clay minerals are known to readily form thixotropic physical gels in aqueous media, even at low volume fractions. Although the rheological properties of these gels are closely related to the microstructure of the network, the influence of the clay’s physicochemical characteristics remains insufficiently understood. In this study, we systematically investigated the relationships between particle size, cation exchange capacity, and zeta potential, and the rheological behavior of aqueous dispersions of four synthetic smectites. After thorough deionization, dispersions were prepared at controlled NaCl concentrations. We found that the zeta potential strongly correlates with the fineness of the network structure and governs macroscopic rheological responses such as viscosity, yield stress, and gelation behavior. Even under identical conditions, gel transparency and structural coarseness varied significantly among clay types. Furthermore, the storage modulus was influenced not only by network density but also by the intrinsic stiffness of the clay branches. These findings demonstrate that zeta potential serves as a unified indicator of structure and function in smectite dispersions and offer useful insights for gel design in colloidal and soft matter systems. Full article
Show Figures

Figure 1

17 pages, 3755 KB  
Article
Sustainable Removal of Cr(VI) from Wastewater Using Green Composites of Zero-Valent Iron and Natural Clays
by Slavica Lazarević, Ivona Janković-Častvan, Željko Radovanović, Zvezdana Baščarević, Đorđe Janaćković and Rada Petrović
Sustainability 2024, 16(18), 7904; https://doi.org/10.3390/su16187904 - 10 Sep 2024
Cited by 4 | Viewed by 2523
Abstract
Composites for efficient removal of hexavalent chromium Cr(VI) from industrial wastewater were obtained by deposition of nano-zero-valent iron (nZVI), synthesized by environmentally friendly synthesis using oak leaf extract, on inexpensive, natural, readily available and cheap natural raw materials, sepiolite (SEP) or kaolinite/illite (KUb) [...] Read more.
Composites for efficient removal of hexavalent chromium Cr(VI) from industrial wastewater were obtained by deposition of nano-zero-valent iron (nZVI), synthesized by environmentally friendly synthesis using oak leaf extract, on inexpensive, natural, readily available and cheap natural raw materials, sepiolite (SEP) or kaolinite/illite (KUb) clay, as support. nZVI particles were deposited from the FeCl3 solution of different concentrations, with the same volume ratio extract/FeCl3 solution (3:1), and with different masses of SEP or KUb. Physico–chemical characterization (SEM/EDS, FTIR, BET, determination of point of zero charge) of the composites and nZVI was performed. The results of SEM and BET analyses suggested more homogeneous deposition of nZVI onto SEP than onto KUb, which ensures greater availability of the nZVI surface for Cr(VI) anions. Therefore, the higher Cr(VI) removal at all investigated initial pH values (pHi) of the solution (3, 4 and 5) was achieved with the SEP composites. The adsorption results indicated that the elimination of Cr(VI) was achieved via the combined effect of reduction and adsorption. The removal of total chromium at pHi = 3 was approximately the same as that of Cr(VI) removal for the KUb composites, but lower for the SEP composites, indicating lower removal of Cr(III) compared to the reduced Cr(VI). The SEP/nZVI composite with the highest removal efficiency was applied for Cr(VI) removal from real wastewater at pHi = 3 and pHi = 5. The results demonstrated the high Cr(VI) removal capacity, validated the assumption that a good dispersion of nZVI particles is beneficial for Cr(VI) removal and showed that the produced green composites can be efficient materials for the removal of Cr(VI) from wastewater. Full article
(This article belongs to the Special Issue Advances in Adsorption Processes for Sustainable Water Treatment)
Show Figures

Figure 1

12 pages, 3341 KB  
Article
The Impact of Using Different Doses of Biomass Ash on Some Physical Properties of Podzolic Soil under the Cultivation of Winter Oilseed Rape
by Jadwiga Stanek-Tarkowska, Ewa Antonina Czyż, Miłosz Pastuszczak and Karol Skrobacz
Int. J. Environ. Res. Public Health 2022, 19(11), 6693; https://doi.org/10.3390/ijerph19116693 - 30 May 2022
Cited by 4 | Viewed by 2352
Abstract
This two-year study was focused on the effect of the application of different biomass ash doses on selected soil physical properties, i.e., soil moisture (SM), bulk density (BD), penetration resistance (PR), and soil stability in water measured by the content of readily dispersible [...] Read more.
This two-year study was focused on the effect of the application of different biomass ash doses on selected soil physical properties, i.e., soil moisture (SM), bulk density (BD), penetration resistance (PR), and soil stability in water measured by the content of readily dispersible clay (RDC), following control and mineral NPK fertilization in the cultivation of winter oilseed rape (Brassica napus L. var. napus). A one-factor field experiment conducted on podzolic soil (control, NPK, 100, 200, 300, 400, 500 kg K2O·ha−1) showed that the use of biomass combustion ash significantly improved soil moisture at all depths and variants, and especially at a depth of 30–35 cm in the 500 kg·ha−1 variant, i.e., by 2.99% v/v, compared to NPK. In turn, the moisture content in the 30–35 cm layer increased by 3.19% v/v in all variants in both years compared to the control. In 2020 and 2021, bulk density in the 0–5 cm layer treated with a dose of 500 kg·ha−1 exhibited a positive 0.15 and 0.12 Mg·m−3 decrease, respectively, compared to the control. In both years, the BD values in the 30–35 cm layer were reduced by 0.14 and 0.16 Mg·m−3 compared to the control. The PR values decreased in the treatments with doses of 300, 400, and 500 kg·ha−1, especially in 2021. The RDC content was found to decline in both years, i.e., 2020 and 2021, upon the application of even the lowest dose (100 kg·ha−1) in all the analysed layers. The reduction in the RDC content, especially in the 0–5 cm layer, is very important for soil structure stability and to protect the soil environment. This layer is most susceptible to crusting, which results in poor aeration and weak plant emergence during drought and/or periods of excessive moisture. It may also increase surface runoff and intensify soil erosion processes. Full article
(This article belongs to the Special Issue Sustainable Agriculture: Soil Health and Waste Management)
Show Figures

Figure 1

22 pages, 4776 KB  
Article
Biomedical PEVA Nanocomposite with Dual Clay Nanofiller: Cytotoxicity, Mechanical Properties, and Biostability
by Tuty Fareyhynn Mohammed Fitri, Azlin Fazlina Osman, Eid M. Alosime, Rahimah Othman, Fatimah Hashim and Mohd Aidil Adhha Abdullah
Polymers 2021, 13(24), 4345; https://doi.org/10.3390/polym13244345 - 12 Dec 2021
Cited by 9 | Viewed by 3524
Abstract
Poly(ethylene-vinyl acetate) (PEVA) nanocomposite incorporating dual clay nanofiller (DCN) of surface modified montmorillonite (S-MMT) and bentonite (Bent) was studied for biomedical applications. In order to overcome agglomeration of the DCN, the S-MMT and Bent were subjected to a physical treatment prior to being [...] Read more.
Poly(ethylene-vinyl acetate) (PEVA) nanocomposite incorporating dual clay nanofiller (DCN) of surface modified montmorillonite (S-MMT) and bentonite (Bent) was studied for biomedical applications. In order to overcome agglomeration of the DCN, the S-MMT and Bent were subjected to a physical treatment prior to being mixed with the copolymer to form nanocomposite material. The S-MMT and Bent were physically treated to become S-MMT(P) and Bent(pH-s), respectively, that could be more readily dispersed in the copolymer matrix due to increments in their basal spacing and loosening of their tactoid structure. The biocompatibility of both nanofillers was assessed through a fibroblast cell cytotoxicity assay. The mechanical properties of the neat PEVA, PEVA nanocomposites, and PEVA-DCN nanocomposites were evaluated using a tensile test for determining the best S-MMT(P):Bent(pH-s) ratio. The results were supported by morphological studies by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Biostability evaluation of the samples was conducted by comparing the ambient tensile test data with the in vitro tensile test data (after being immersed in simulated body fluid at 37 °C for 3 months). The results were supported by surface degradation analysis. Our results indicate that the cytotoxicity level of both nanofillers reduced upon the physical treatment process, making them safe to be used in low concentration as dual nanofillers in the PEVA-DCN nanocomposite. The results of tensile testing, SEM, and TEM proved that the ratio of 4:1 (S-MMT(P):Bent(pH-s)) provides a greater enhancement in the mechanical properties of the PEVA matrix. The biostability assessment indicated that the PEVA-DCN nanocomposite can achieve much better retention in tensile strength after being subjected to the simulated physiological fluid for 3 months with less surface degradation effect. These findings signify the potential of the S-MMT(P)/Bent(pH-s) as a reinforcing DCN, with simultaneous function as biostabilizing agent to the PEVA copolymer for implant application. Full article
(This article belongs to the Special Issue Intrinsically Biocompatible Polymer Systems II)
Show Figures

Graphical abstract

25 pages, 2515 KB  
Article
Effects of Different Tillage Intensities on Physicochemical and Microbial Properties of a Eutric Fluvisol Soil
by Anna Maria Gajda, Ewa Antonina Czyż and Agnieszka Klimkowicz-Pawlas
Agronomy 2021, 11(8), 1497; https://doi.org/10.3390/agronomy11081497 - 28 Jul 2021
Cited by 17 | Viewed by 3538
Abstract
The physicochemical and microbial properties of soil under long-term monoculture of winter wheat were studied to assess the effects of two tillage systems of different intensities: reduced (RT) and conventional (CT). The research was carried out on an 18-year-old experimental field at Grabów [...] Read more.
The physicochemical and microbial properties of soil under long-term monoculture of winter wheat were studied to assess the effects of two tillage systems of different intensities: reduced (RT) and conventional (CT). The research was carried out on an 18-year-old experimental field at Grabów (eastern Poland) between 2018 and 2020. The RT (ploughless) and the CT (mouldboard ploughing) systems with machine operating depths of up to 10 and 25 cm, respectively, were used. The analysed parameters were as follows: soil texture, pH, readily dispersible clay content (RDC), soil organic matter (SOM), carbon from particulate organic matter (POM-C), hot- and cold-water-extractable organic carbon (HWEC, CWEC) and nitrogen (HWEN, CWEN), soil basal respiration (SBR), microbial biomass carbon (MBC) and nitrogen (MBN), nitrification potential (NP), dehydrogenases (DEH), and acid (ACP) and alkaline (ALP) phosphatases activities. Several single soil quality indices, including: metabolic (qCO2) and microbial (MicQ) quotients, enzymatic pH level indicator (EpHI), stratification ratio (SR), and metabolic potential index (MP) were calculated. The use of RT resulted in increased SOM and, therefore, in decreased RDC and increased values of soil stability, POM-C, HWEC, CWEC, HWEN, CWEN, MBC, and MBN in relation to CT. The MicQ, EpHI, SR, and MP well reflected the effects of RT and CT systems on soil and appeared to be useful in soil quality assessment. The results showed the beneficial effects on soil of the less intensive RT system in comparison with CT. Statistical analysis showed the significance of differences between tillage systems and interrelationships between the studied soil quality parameters. Full article
Show Figures

Figure 1

17 pages, 1124 KB  
Article
The Effect of Tillage on Organic Carbon Stabilization in Microaggregates in Different Climatic Zones of European Russia
by Zinaida S. Artemyeva and Boris M. Kogut
Agriculture 2016, 6(4), 63; https://doi.org/10.3390/agriculture6040063 - 2 Dec 2016
Cited by 12 | Viewed by 5760
Abstract
Tillage may affect the microstructural organization of soil, including the distribution of microaggregates with different mechanical strengths. We quantified the impact of tillage treatment on the amount and distribution of free organic matter, microaggregates (unstable and stable under low intensity sonification) and their [...] Read more.
Tillage may affect the microstructural organization of soil, including the distribution of microaggregates with different mechanical strengths. We quantified the impact of tillage treatment on the amount and distribution of free organic matter, microaggregates (unstable and stable under low intensity sonification) and their components, in the upper horizons of zonal soils of the Center of the Russian Plain. Under plowing, the carbon content decreases, both in unstable and stable microaggregates. The loss of carbon in unstable microaggregates was ~24%, whereas in stable microaggregates, it was ~37%, relative to native soils. The carbon content of organic (LFoc) and organo-clay (Clayrd) fractions in unstable microaggregates (CLFoc/CClayrd) was almost identical in the upper horizons of native soils: the ratio of these components is for Albeluvisols (1.1), Phaeozem (0.8) and Chernozems (1.0). Under plowing, these decrease to: Albeluvisols and Chernozems (0.6) and Phaeozem (0.5). The shares of carbon accumulated within the unstable and stable microaggregates (Cunstable/Cstable) are constant under equilibrium conditions and show a tendency to decrease from north to south on the order of: Albeluvisols and Phaeozem (2.2) > Chernozems (1.0). Under plowing, they increase to: Albeluvisols (3.0) and Phaeozem (3.2) > Chernozems (1.5). Full article
Show Figures

Figure 1

Back to TopTop