Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = reactive electrophile species (RES)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 835 KiB  
Communication
Singlet-Oxygen-Mediated Regulation of Photosynthesis-Specific Genes: A Role for Reactive Electrophiles in Signal Transduction
by Tina Pancheri, Theresa Baur and Thomas Roach
Int. J. Mol. Sci. 2024, 25(15), 8458; https://doi.org/10.3390/ijms25158458 - 2 Aug 2024
Cited by 1 | Viewed by 1205
Abstract
During photosynthesis, reactive oxygen species (ROS) are formed, including hydrogen peroxide (H2O2) and singlet oxygen (1O2), which have putative roles in signalling, but their involvement in photosynthetic acclimation is unclear. Due to extreme reactivity and [...] Read more.
During photosynthesis, reactive oxygen species (ROS) are formed, including hydrogen peroxide (H2O2) and singlet oxygen (1O2), which have putative roles in signalling, but their involvement in photosynthetic acclimation is unclear. Due to extreme reactivity and a short lifetime, 1O2 signalling occurs via its reaction products, such as oxidised poly-unsaturated fatty acids in thylakoid membranes. The resulting lipid peroxides decay to various aldehydes and reactive electrophile species (RES). Here, we investigated the role of ROS in the signal transduction of high light (HL), focusing on GreenCut2 genes unique to photosynthetic organisms. Using RNA seq. data, the transcriptional responses of Chlamydomonas reinhardtii to 2 h HL were compared with responses under low light to exogenous RES (acrolein; 4-hydroxynonenal), β-cyclocitral, a β-carotene oxidation product, as well as Rose Bengal, a 1O2-producing photosensitiser, and H2O2. HL induced significant (p < 0.05) up- and down-regulation of 108 and 23 GreenCut2 genes, respectively. Of all HL up-regulated genes, over half were also up-regulated by RES, including RBCS1 (ribulose bisphosphate carboxylase small subunit), NPQ-related PSBS1 and LHCSR1. Furthermore, 96% of the genes down-regulated by HL were also down-regulated by 1O2 or RES, including CAO1 (chlorophyllide-a oxygnease), MDH2 (NADP-malate dehydrogenase) and PGM4 (phosphoglycerate mutase) for glycolysis. In comparison, only 0–4% of HL-affected GreenCut2 genes were similarly affected by H2O2 or β-cyclocitral. Overall, 1O2 plays a significant role in signalling during the initial acclimation of C. reinhardtii to HL by up-regulating photo-protection and carbon assimilation and down-regulating specific primary metabolic pathways. Our data support that this pathway involves RES. Full article
Show Figures

Figure 1

18 pages, 302 KiB  
Review
Recent Development on Plant Aldehyde Dehydrogenase Enzymes and Their Functions in Plant Development and Stress Signaling
by Adesola J. Tola, Amal Jaballi, Hugo Germain and Tagnon D. Missihoun
Genes 2021, 12(1), 51; https://doi.org/10.3390/genes12010051 - 31 Dec 2020
Cited by 58 | Viewed by 7408
Abstract
Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated [...] Read more.
Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated carbonyl group. Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that metabolize a wide range of endogenous and exogenous aliphatic and aromatic aldehyde molecules by oxidizing them to their corresponding carboxylic acids. The ALDH enzymes are found in nearly all organisms, and plants contain fourteen ALDH protein families. In this review, we performed a critical analysis of the research reports over the last decade on plant ALDHs. Newly discovered roles for these enzymes in metabolism, signaling and development have been highlighted and discussed. We concluded with suggestions for future investigations to exploit the potential of these enzymes in biotechnology and to improve our current knowledge about these enzymes in gene signaling and plant development. Full article
(This article belongs to the Special Issue New Insights into Plant Development and Signal Transduction)
16 pages, 2680 KiB  
Article
Inactivation of Carbonyl-Detoxifying Enzymes by H2O2 Is a Trigger to Increase Carbonyl Load for Initiating Programmed Cell Death in Plants
by Md. Sanaullah Biswas, Ryota Terada and Jun’ichi Mano
Antioxidants 2020, 9(2), 141; https://doi.org/10.3390/antiox9020141 - 6 Feb 2020
Cited by 19 | Viewed by 4200
Abstract
H2O2-induced programmed cell death (PCD) of tobacco Bright Yellow-2 (BY-2) cells is mediated by reactive carbonyl species (RCS), degradation products of lipid peroxides, which activate caspase-3-like protease (C3LP). Here, we investigated the mechanism of RCS accumulation in the H [...] Read more.
H2O2-induced programmed cell death (PCD) of tobacco Bright Yellow-2 (BY-2) cells is mediated by reactive carbonyl species (RCS), degradation products of lipid peroxides, which activate caspase-3-like protease (C3LP). Here, we investigated the mechanism of RCS accumulation in the H2O2-induced PCD of BY-2 cells. The following biochemical changes were observed in 10-min response to a lethal dose (1.0 mM) of H2O2, but they did not occur in a sublethal dose (0.5 mM) of H2O2. (1) The C3LP activity was increased twofold. (2) The intracellular levels of RCS, i.e., 4-hydroxy-(E)-hexenal and 4-hydroxy-(E)-nonenal (HNE), were increased 1.2–1.5-fold. (3) The activity of a reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent carbonyl reductase, scavenging HNE, and n-hexanal was decreased. Specifically, these are the earliest events leading to PCD. The proteasome inhibitor MG132 suppressed the H2O2-induced PCD, indicating that the C3LP activity of the β1 subunit of the 20S proteasome was responsible for PCD. The addition of H2O2 to cell-free protein extract inactivated the carbonyl reductase. Taken together, these results suggest a PCD-triggering mechanism in which H2O2 first inactivates a carbonyl reductase(s), allowing RCS levels to rise, and eventually leads to the activation of the C3LP activity of 20S proteasome. The carbonyl reductase thus acts as an ROS sensor for triggering PCD. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant)
Show Figures

Figure 1

23 pages, 2385 KiB  
Review
Reactive Carbonyl Species: A Missing Link in ROS Signaling
by Jun’ichi Mano, Md. Sanaullah Biswas and Koichi Sugimoto
Plants 2019, 8(10), 391; https://doi.org/10.3390/plants8100391 - 30 Sep 2019
Cited by 95 | Viewed by 9077
Abstract
As reactive oxygen species (ROS) play critical roles in plants to determine cell fate in various physiological situations, there is keen interest in the biochemical processes of ROS signal transmission. Reactive carbonyl species (RCS), the α,β-unsaturated aldehydes and ketones produced [...] Read more.
As reactive oxygen species (ROS) play critical roles in plants to determine cell fate in various physiological situations, there is keen interest in the biochemical processes of ROS signal transmission. Reactive carbonyl species (RCS), the α,β-unsaturated aldehydes and ketones produced from lipid peroxides, due to their chemical property to covalently modify protein, can mediate ROS signals to proteins. Comprehensive carbonyl analysis in plants has revealed that more than a dozen different RCS, e.g., acrolein, 4-hydroxy-(E)-2-nonenal and malondialdehyde, are produced from various membranes, and some of them increase and modify proteins in response to oxidative stimuli. At early stages of response, specific subsets of proteins are selectively modified with RCS. The involvement of RCS in ROS signaling can be judged on three criteria: (1) A stimulus to increase the ROS level in plants leads to the enhancement of RCS levels. (2) Suppression of the increase of RCS by scavenging enzymes or chemicals diminishes the ROS-induced response. (3) Addition of RCS to plants evokes responses similar to those induced by ROS. On these criteria, the RCS action as damaging/signaling agents has been demonstrated for root injury, programmed cell death, senescence of siliques, stomata response to abscisic acid, and root response to auxin. RCS thus act as damage/signal mediators downstream of ROS in a variety of physiological situations. A current picture and perspectives of RCS research are presented in this article. Full article
(This article belongs to the Special Issue ROS Responses in Plants)
Show Figures

Figure 1

14 pages, 661 KiB  
Review
The Emerging Role of Electrophiles as a Key Regulator for Endoplasmic Reticulum (ER) Stress
by Nobumasa Takasugi, Hideki Hiraoka, Kengo Nakahara, Shiori Akiyama, Kana Fujikawa, Ryosuke Nomura, Moeka Furuichi and Takashi Uehara
Int. J. Mol. Sci. 2019, 20(7), 1783; https://doi.org/10.3390/ijms20071783 - 10 Apr 2019
Cited by 12 | Viewed by 5107
Abstract
The unfolded protein response (UPR) is activated by the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which is called ER stress. ER stress sensors PERK, IRE1, and ATF6 play a central role in the initiation and regulation of the UPR; they [...] Read more.
The unfolded protein response (UPR) is activated by the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which is called ER stress. ER stress sensors PERK, IRE1, and ATF6 play a central role in the initiation and regulation of the UPR; they inhibit novel protein synthesis and upregulate ER chaperones, such as protein disulfide isomerase, to remove unfolded proteins. However, when recovery from ER stress is difficult, the UPR pathway is activated to eliminate unhealthy cells. This signaling transition is the key event of many human diseases. However, the precise mechanisms are largely unknown. Intriguingly, reactive electrophilic species (RES), which exist in the environment or are produced through cellular metabolism, have been identified as a key player of this transition. In this review, we focused on the function of representative RES: nitric oxide (NO) as a gaseous RES, 4-hydroxynonenal (HNE) as a lipid RES, and methylmercury (MeHg) as an environmental organic compound RES, to outline the relationship between ER stress and RES. Modulation by RES might be a target for the development of next-generation therapy for ER stress-associated diseases. Full article
(This article belongs to the Special Issue Endoplasmic Reticulum Stress and Unfolded Protein Response)
Show Figures

Figure 1

12 pages, 2205 KiB  
Review
Bacterial Responses to Glyoxal and Methylglyoxal: Reactive Electrophilic Species
by Changhan Lee and Chankyu Park
Int. J. Mol. Sci. 2017, 18(1), 169; https://doi.org/10.3390/ijms18010169 - 17 Jan 2017
Cited by 79 | Viewed by 12380
Abstract
Glyoxal (GO) and methylglyoxal (MG), belonging to α-oxoaldehydes, are produced by organisms from bacteria to humans by glucose oxidation, lipid peroxidation, and DNA oxidation. Since glyoxals contain two adjacent reactive carbonyl groups, they are referred to as reactive electrophilic species (RES), and are [...] Read more.
Glyoxal (GO) and methylglyoxal (MG), belonging to α-oxoaldehydes, are produced by organisms from bacteria to humans by glucose oxidation, lipid peroxidation, and DNA oxidation. Since glyoxals contain two adjacent reactive carbonyl groups, they are referred to as reactive electrophilic species (RES), and are damaging to proteins and nucleotides. Therefore, glyoxals cause various diseases in humans, such as diabetes and neurodegenerative diseases, from which all living organisms need to be protected. Although the glyoxalase system has been known for some time, details on how glyoxals are sensed and detoxified in the cell have not been fully elucidated, and are only beginning to be uncovered. In this review, we will summarize the current knowledge on bacterial responses to glyoxal, and specifically focus on the glyoxal-associated regulators YqhC and NemR, as well as their detoxification mediated by glutathione (GSH)-dependent/independent glyoxalases and NAD(P)H-dependent reductases. Furthermore, we will address questions and future directions. Full article
(This article belongs to the Special Issue Glyoxalase System)
Show Figures

Graphical abstract

Back to TopTop