Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = radical anion nucleophilic substitution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4253 KiB  
Article
Porphyrin Polymers Bearing N,N′-Ethylene Crosslinkers as Photosensitizers against Bacteria
by Sofía C. Santamarina, Daniel A. Heredia, Andrés M. Durantini and Edgardo N. Durantini
Polymers 2022, 14(22), 4936; https://doi.org/10.3390/polym14224936 - 15 Nov 2022
Cited by 8 | Viewed by 2072
Abstract
The appearance of microbes resistant to antibiotics requires the development of alternative therapies for the treatment of infectious diseases. In this work two polymers, PTPPF16-EDA and PZnTPPF16-EDA, were synthesized by the nucleophilic aromatic substitution of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin and its Zn(II) [...] Read more.
The appearance of microbes resistant to antibiotics requires the development of alternative therapies for the treatment of infectious diseases. In this work two polymers, PTPPF16-EDA and PZnTPPF16-EDA, were synthesized by the nucleophilic aromatic substitution of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin and its Zn(II) complex with ethylenediamine, respectively. In these structures, the tetrapyrrolic macrocycles were N,N′-ethylene crosslinked, which gives them greater mobility. The absorption spectra of the polymers showed a bathochromic shift of the Soret band of ~10 nm with respect to the monomers. This effect was also found in the red fluorescence emission peaks. Furthermore, both polymeric materials produced singlet molecular oxygen with high quantum yields. In addition, they were capable of generating superoxide anion radicals. Photodynamic inactivation sensitized by these polymers was tested in Staphylococcus aureus and Escherichia coli bacteria. A decrease in cell viability greater than 7 log (99.9999%) was observed in S. aureus incubated with 0.5 μM photosensitizer upon 30 min of irradiation. Under these conditions, a low inactivation of E. coli (0.5 log) was found. However, when the cells were treated with KI, the elimination of the Gram-negative bacteria was achieved. Therefore, these polymeric structures are interesting antimicrobial photosensitizing materials for the inactivation of pathogens. Full article
(This article belongs to the Special Issue Antimicrobial Properties of Polymers)
Show Figures

Graphical abstract

11 pages, 5177 KiB  
Article
Regioselective Transfer Hydrogenative Defluorination of Polyfluoroarenes Catalyzed by Bifunctional Azairidacycle
by Asuka Matsunami, Shigeki Kuwata and Yoshihito Kayaki
Organics 2022, 3(3), 150-160; https://doi.org/10.3390/org3030012 - 22 Jun 2022
Cited by 2 | Viewed by 3651
Abstract
The catalytic hydrodefluorination (HDF) with a bifunctional azairidacycle using HCOOK was examined for cyano- and chloro-substituted fluoroarenes, including penta- and tetrafluorobenzonitriles, tetrafluoroterephthalonitrile, tetrafluorophthalonitrile, 3-chloro-2,4,5,6-tetrafluoropyridine, and 4-cyano-2,3,5,6-tetrafluoropyridine. The reaction was performed in the presence of a controlled amount of HCOOK with a substrate/catalyst ratio [...] Read more.
The catalytic hydrodefluorination (HDF) with a bifunctional azairidacycle using HCOOK was examined for cyano- and chloro-substituted fluoroarenes, including penta- and tetrafluorobenzonitriles, tetrafluoroterephthalonitrile, tetrafluorophthalonitrile, 3-chloro-2,4,5,6-tetrafluoropyridine, and 4-cyano-2,3,5,6-tetrafluoropyridine. The reaction was performed in the presence of a controlled amount of HCOOK with a substrate/catalyst ratio (S/C) of 100 in a 1:1 mixture of 1,2-dimethoxyethane (DME) and H2O at an ambient temperature of 30 °C to obtain partially fluorinated compounds with satisfactory regioselectivities. The C–F bond cleavage proceeded favorably at the para position of substituents other than fluorine, which is in consonance with the nucleophilic aromatic substitution mechanism. In the HDF of tetrafluoroterephthalonitrile and 4-cyano-2,3,5,6-tetrafluoropyridine, which do not contain a fluorine atom at the para position of the cyano group, the double defluorination occurred solely at the 2- and 5-positions, as confirmed by X-ray crystallography. The HDF of 3-chloro-2,4,5,6-tetrafluoropyridine gave preference to the C–F bond cleavage over the C–Cl bond cleavage, unlike the dehalogenation pathway via electron-transfer radical anion fragmentation. In addition, new azairidacycles with an electron-donating methoxy substituent on the C–N chelating ligand were synthesized and served as a catalyst precursor (0.2 mol%) for the transfer hydrogenative defluorination of pentafluoropyridine, leading to 2,3,5,6-tetrafluoropyridine with up to a turnover number (TON) of 418. Full article
(This article belongs to the Collection Advanced Research Papers in Organics)
Show Figures

Graphical abstract

14 pages, 3123 KiB  
Article
Theoretical Investigations on the Reactivity of Hydrogen Peroxide toward 2,3,7,8-Tetrachlorodibenzo-p-dioxin
by Weihua Wang, Yuhua Wang, Wenling Feng, Wenliang Wang and Ping Li
Molecules 2018, 23(11), 2826; https://doi.org/10.3390/molecules23112826 - 31 Oct 2018
Cited by 5 | Viewed by 4016
Abstract
Acquiring full knowledge of the reactivity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is crucial for the better understanding of the transformation and degradation of TCDD-like dioxins in the environment. To clarify the reactivity of the organic hydroperoxides toward TCDD, in this study, the reactions [...] Read more.
Acquiring full knowledge of the reactivity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is crucial for the better understanding of the transformation and degradation of TCDD-like dioxins in the environment. To clarify the reactivity of the organic hydroperoxides toward TCDD, in this study, the reactions between the neutral/anion of the hydrogen peroxide (H2O2) and TCDD have been systematically investigated theoretically. It was found that the neutral H2O2 is relatively difficult to react with TCDD compared with its anion, exhibiting the pH dependence of the title reaction. As for the anion of H2O2, it reacts with TCDD through two reaction mechanisms, i.e., nucleophilic substitution and nucleophilic addition. For the former, the terminal O atom of HO2 nucleophilically attacks the C atom of the C-Cl bond in TCDD to form an intermediate containing an O-O bond, accompanying the dissociation of the chlorine atom. For the latter, the terminal O atom of HO2 can be easily attached to the C atom of the C-O bond in TCDD, resulting in the decomposition of C-O bond and the formation of an intermediate containing an O-O bond. For these formed intermediates in both reaction mechanisms, their O-O bonds can be homolytically cleaved to produce different radicals. In addition, the selected substitution effects including F-, Br-, and CH3- substituents on the above reactions have also been studied. Hopefully, the present results can provide new insights into the reactivity of the organic hydroperoxides toward TCDD-like environmental pollutants. Full article
(This article belongs to the Special Issue Theoretical Investigations of Reaction Mechanisms)
Show Figures

Figure 1

10 pages, 3224 KiB  
Article
A Computational Study of Structure and Reactivity of N-Substitued-4-Piperidones Curcumin Analogues and Their Radical Anions
by Maximiliano Martínez-Cifuentes, Boris Weiss-López and Ramiro Araya-Maturana
Molecules 2016, 21(12), 1658; https://doi.org/10.3390/molecules21121658 - 2 Dec 2016
Cited by 6 | Viewed by 6122
Abstract
In this work, a computational study of a series of N-substitued-4-piperidones curcumin analogues is presented. The molecular structure of the neutral molecules and their radical anions, as well as their reactivity, are investigated. N-substituents include methyl and benzyl groups, while substituents [...] Read more.
In this work, a computational study of a series of N-substitued-4-piperidones curcumin analogues is presented. The molecular structure of the neutral molecules and their radical anions, as well as their reactivity, are investigated. N-substituents include methyl and benzyl groups, while substituents on the aromatic rings cover electron-donor and electron-acceptor groups. Substitutions at the nitrogen atom do not significantly affect the geometry and frontier molecular orbitals (FMO) energies of these molecules. On the other hand, substituents on the aromatic rings modify the distribution of FMO. In addition, they influence the capability of these molecules to attach an additional electron, which was studied through adiabatic (AEA) and vertical electron affinities (VEA), as well as vertical detachment energy (VDE). To study electrophilic properties of these structures, local reactivity indices, such as Fukui (f+) and Parr (P+) functions, were calculated, and show the influence of the aromatic rings substituents on the reactivity of α,β-unsaturated ketones towards nucleophilic attack. This study has potential implications for the design of curcumin analogues based on a 4-piperidone core with desired reactivity. Full article
Show Figures

Graphical abstract

22 pages, 512 KiB  
Article
Cobalt-Catalyzed Methoxycarbonylation of Substituted Dichlorobenzenes as an Example of a Facile Radical Anion Nucleophilic Substitution in Chloroarenes
by Tatyana S. Khaibulova, Irina A. Boyarskaya, Evgeny Larionov and Vadim P. Boyarskiy
Molecules 2014, 19(5), 5876-5897; https://doi.org/10.3390/molecules19055876 - 6 May 2014
Cited by 9 | Viewed by 7519
Abstract
A thorough mechanistic study on cobalt-catalysed direct methoxycarbonylation reactions of chlorobenzenes in the presence of methyl oxirane on a wide range of substrates, including poly- and monochloro derivatives with multiple substituents, is reported. The results demonstrate that the reaction is potentially useful as [...] Read more.
A thorough mechanistic study on cobalt-catalysed direct methoxycarbonylation reactions of chlorobenzenes in the presence of methyl oxirane on a wide range of substrates, including poly- and monochloro derivatives with multiple substituents, is reported. The results demonstrate that the reaction is potentially useful as it proceeds under very mild conditions (t = 62 °C, PCO = 1 bar) and converts aryl chlorides to far more valuable products (especially ortho-substituted benzoic acids and esters) in high yields. This transformation also offers another opportunity for the utilization of environmentally harmful polychlorinated benzenes and biphenyls (PCBs). This study is the first to discover an unexpected universal positive ortho-effect: the proximity of any substituent (including Me, Ph, and MeO groups and halogen atoms) to the reaction centre accelerates the methoxycarbonylation in chlorobenzenes. The effect of the ortho-substituents is discussed in detail and explained in terms of a radical anion reaction mechanism. The advantages of the methoxycarbonylation as a model for the mechanistic study of radical anion reactions are also illustrated. Full article
(This article belongs to the Special Issue Carbonylation Chemistry)
Show Figures

Figure 1

Back to TopTop