Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = radiation induced graft copolymerization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2729 KiB  
Article
Membranes Based on Polyvinylidene Fluoride and Radiation-Grafted Sulfonated Polystyrene and Their Performance in Proton-Exchange Membrane Fuel Cells
by Daniil V. Golubenko, Oleg V. Korchagin, Daria Yu. Voropaeva, Vera A. Bogdanovskaya and Andrey B. Yaroslavtsev
Polymers 2022, 14(18), 3833; https://doi.org/10.3390/polym14183833 - 14 Sep 2022
Cited by 9 | Viewed by 2768
Abstract
Proton-exchange membranes based on gamma-irradiated films of PVDF and radiation-grafted sulfonated polystyrene with an ion-exchange capacity of 1.8 meq/g and crosslinking degrees of 0 and 3% were synthesized. A solvent-free, environmentally friendly method of styrene grafting from its aqueous emulsion, with a styrene [...] Read more.
Proton-exchange membranes based on gamma-irradiated films of PVDF and radiation-grafted sulfonated polystyrene with an ion-exchange capacity of 1.8 meq/g and crosslinking degrees of 0 and 3% were synthesized. A solvent-free, environmentally friendly method of styrene grafting from its aqueous emulsion, with a styrene content of only 5 vol.% was used. Energy dispersive X-ray mapping analysis showed that the grafted sulfonated polystyrene is uniformly distributed throughout the membrane thickness. The obtained materials had a proton conductivity up to 132 mS/cm at 80 °C and a hydrogen permeability of up to 5.2 cm2/s at 30 °C, which significantly exceeded similar values for Nafion®-212 membranes. The resulting membranes exhibited a H2/O2 fuel cell peak power density of up to 0.4 W/cm2 at 65 °C. Accelerated stability tests showed that adding a crosslinking agent could significantly increase the stability of the membranes in the fuel cells. The thermal properties and crystallinity of the membranes were investigated through differential scanning calorimetry and X-ray powder diffraction methods. The conductivity, water uptake, and mechanical properties of the membranes (stress–strain curves) were also characterized. Full article
Show Figures

Figure 1

46 pages, 4344 KiB  
Review
Fouling Prevention in Polymeric Membranes by Radiation Induced Graft Copolymerization
by Muhammad Nidzhom Zainol Abidin, Mohamed Mahmoud Nasef and Takeshi Matsuura
Polymers 2022, 14(1), 197; https://doi.org/10.3390/polym14010197 - 4 Jan 2022
Cited by 21 | Viewed by 4649
Abstract
The application of membrane processes in various fields has now undergone accelerated developments, despite the presence of some hurdles impacting the process efficiency. Fouling is arguably the main hindrance for a wider implementation of polymeric membranes, particularly in pressure-driven membrane processes, causing higher [...] Read more.
The application of membrane processes in various fields has now undergone accelerated developments, despite the presence of some hurdles impacting the process efficiency. Fouling is arguably the main hindrance for a wider implementation of polymeric membranes, particularly in pressure-driven membrane processes, causing higher costs of energy, operation, and maintenance. Radiation induced graft copolymerization (RIGC) is a powerful versatile technique for covalently imparting selected chemical functionalities to membranes’ surfaces, providing a potential solution to fouling problems. This article aims to systematically review the progress in modifications of polymeric membranes by RIGC of polar monomers onto membranes using various low- and high-energy radiation sources (UV, plasma, γ-rays, and electron beam) for fouling prevention. The feasibility of the modification method with respect to physico-chemical and antifouling properties of the membrane is discussed. Furthermore, the major challenges to the modified membranes in terms of sustainability are outlined and the future research directions are also highlighted. It is expected that this review would attract the attention of membrane developers, users, researchers, and scientists to appreciate the merits of using RIGC for modifying polymeric membranes to mitigate the fouling issue, increase membrane lifespan, and enhance the membrane system efficiency. Full article
(This article belongs to the Special Issue Advanced Polymer Membranes)
Show Figures

Figure 1

34 pages, 5137 KiB  
Review
Engineered Bioactive Polymeric Surfaces by Radiation Induced Graft Copolymerization: Strategies and Applications
by Mohamed Mahmoud Nasef, Bhuvanesh Gupta, Kamyar Shameli, Chetna Verma, Roshafima Rasit Ali and Teo Ming Ting
Polymers 2021, 13(18), 3102; https://doi.org/10.3390/polym13183102 - 15 Sep 2021
Cited by 32 | Viewed by 6159
Abstract
The interest in developing antimicrobial surfaces is currently surging with the rise in global infectious disease events. Radiation-induced graft copolymerization (RIGC) is a powerful technique enabling permanent tunable and desired surface modifications imparting antimicrobial properties to polymer substrates to prevent disease transmission and [...] Read more.
The interest in developing antimicrobial surfaces is currently surging with the rise in global infectious disease events. Radiation-induced graft copolymerization (RIGC) is a powerful technique enabling permanent tunable and desired surface modifications imparting antimicrobial properties to polymer substrates to prevent disease transmission and provide safer biomaterials and healthcare products. This review aims to provide a broader perspective of the progress taking place in strategies for designing various antimicrobial polymeric surfaces using RIGC methods and their applications in medical devices, healthcare, textile, tissue engineering and food packing. Particularly, the use of UV, plasma, electron beam (EB) and γ-rays for biocides covalent immobilization to various polymers surfaces including nonwoven fabrics, films, nanofibers, nanocomposites, catheters, sutures, wound dressing patches and contact lenses is reviewed. The different strategies to enhance the grafted antimicrobial properties are discussed with an emphasis on the emerging approach of in-situ formation of metal nanoparticles (NPs) in radiation grafted substrates. The current applications of the polymers with antimicrobial surfaces are discussed together with their future research directions. It is expected that this review would attract attention of researchers and scientists to realize the merits of RIGC in developing timely, necessary antimicrobial materials to mitigate the fast-growing microbial activities and promote hygienic lifestyles. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

14 pages, 6641 KiB  
Article
Amphoteric Ion Exchange Membranes Prepared by Preirradiation-Induced Emulsion Graft Copolymerization for Vanadium Redox Flow Battery
by Yu Cui, Xibang Chen, Yicheng Wang, Jing Peng, Long Zhao, Jifu Du and Maolin Zhai
Polymers 2019, 11(9), 1482; https://doi.org/10.3390/polym11091482 - 11 Sep 2019
Cited by 19 | Viewed by 4750
Abstract
A series of poly(vinylidene difluoride)-based amphoteric ion exchange membranes (AIEMs) were prepared by preirradiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate in an aqueous emulsion media followed by solution casting, sulfonation, and protonation. The effects of absorbed dose and comonomer concentration on grafting [...] Read more.
A series of poly(vinylidene difluoride)-based amphoteric ion exchange membranes (AIEMs) were prepared by preirradiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate in an aqueous emulsion media followed by solution casting, sulfonation, and protonation. The effects of absorbed dose and comonomer concentration on grafting yield (GY) were investigated. The highest GY of 44.5% at a low comonomer concentration of 0.9 M could be achieved. FTIR, TGA, and X-ray photoelectron spectroscopy (XPS) confirmed the successful grafting and sulfonation of the as-prepared AIEMs. Properties of the AIEMs such as water uptake, ion exchange capacity (IEC), ionic conductivity, and crossover behavior of VO2+ ions prepared by this novel technique were systematically investigated and compared with those of the commercial Nafion 115 membrane. It was found that at a GY of 28.4%, the AIEMs showed higher IEC and conductivity, lower permeability of VO2+ ions, and a longer time to maintain open circuit voltage than Nafion 115, which was attributed to their high GY and elaborate amphoteric structure. Consequently, this work has paved the way for the development of green and low-cost AIEMs with good performance for vanadium redox flow battery applications. Full article
(This article belongs to the Special Issue Radiation Polymers)
Show Figures

Graphical abstract

16 pages, 2247 KiB  
Article
Preparation of Polymer Electrolyte Membranes via Radiation-Induced Graft Copolymerization on Poly(ethylene-alt-tetrafluoroethylene) (ETFE) Using the Crosslinker N,N′-Methylenebis(acrylamide)
by Xi Ke, Marco Drache, Uwe Gohs, Ulrich Kunz and Sabine Beuermann
Membranes 2018, 8(4), 102; https://doi.org/10.3390/membranes8040102 - 6 Nov 2018
Cited by 4 | Viewed by 4430
Abstract
Polymer electrolyte membranes (PEM) prepared by radiation-induced graft copolymerization are investigated. For this purpose, commercial poly(ethylene-alt-tetrafluoroethylene) (ETFE) films were activated by electron beam treatment and subsequently grafted with the monomers glycidyl methacrylate (GMA), hydroxyethyl methacrylate (HEMA) and N,N′-methylenebis(acrylamide) (MBAA) as [...] Read more.
Polymer electrolyte membranes (PEM) prepared by radiation-induced graft copolymerization are investigated. For this purpose, commercial poly(ethylene-alt-tetrafluoroethylene) (ETFE) films were activated by electron beam treatment and subsequently grafted with the monomers glycidyl methacrylate (GMA), hydroxyethyl methacrylate (HEMA) and N,N′-methylenebis(acrylamide) (MBAA) as crosslinker. The target is to achieve a high degree of grafting (DG) and high proton conductivity. To evaluate the electrochemical performance, the PEMs were tested in a fuel cell and in a vanadium redox-flow battery (VRFB). High power densities of 134 mW∙cm−2 and 474 mW∙cm−2 were observed, respectively. Full article
(This article belongs to the Section Polymeric Membranes)
Show Figures

Figure 1

Back to TopTop