Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = quinolinesulfonamides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2666 KiB  
Article
Synthesis, Docking, and Machine Learning Studies of Some Novel Quinolinesulfonamides–Triazole Hybrids with Anticancer Activity
by Krzysztof Marciniec, Justyna Nowakowska, Elwira Chrobak, Ewa Bębenek and Małgorzata Latocha
Molecules 2024, 29(13), 3158; https://doi.org/10.3390/molecules29133158 - 2 Jul 2024
Cited by 2 | Viewed by 2603
Abstract
In the presented work, a series of 22 hybrids of 8-quinolinesulfonamide and 1,4-disubstituted triazole with antiproliferative activity were designed and synthesised. The title compounds were designed using molecular modelling techniques. For this purpose, machine-learning, molecular docking, and molecular dynamics methods were used. Calculations [...] Read more.
In the presented work, a series of 22 hybrids of 8-quinolinesulfonamide and 1,4-disubstituted triazole with antiproliferative activity were designed and synthesised. The title compounds were designed using molecular modelling techniques. For this purpose, machine-learning, molecular docking, and molecular dynamics methods were used. Calculations of the pharmacokinetic parameters (connected with absorption, distribution, metabolism, excretion, and toxicity) of the hybrids were also performed. The new compounds were synthesised via a copper-catalysed azide–alkyne cycloaddition reaction (CuAAC). 8-N-Methyl-N-{[1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl]methyl}quinolinesulfonamide was identified in in silico studies as a potential strong inhibitor of Rho-associated protein kinase and as a compound that has an appropriate pharmacokinetic profile. The results obtained from in vitro experiments confirm the cytotoxicity of derivative 9b in four selected cancer cell lines and the lack of cytotoxicity of this derivative towards normal cells. The results obtained from silico and in vitro experiments indicate that the introduction of another quinolinyl fragment into the inhibitor molecule may have a significant impact on increasing the level of cytotoxicity toward cancer cells and indicate a further direction for future research in order to find new substances suitable for clinical applications in cancer treatment. Full article
(This article belongs to the Special Issue Molecular Modeling: Advancements and Applications II)
Show Figures

Figure 1

18 pages, 5073 KiB  
Article
Design, Synthesis and Biological Evaluation of Quinoline-8-Sulfonamides as Inhibitors of the Tumor Cell-Specific M2 Isoform of Pyruvate Kinase: Preliminary Study
by Krzysztof Marciniec, Zuzanna Rzepka, Elwira Chrobak, Stanisław Boryczka, Małgorzata Latocha, Dorota Wrześniok and Artur Beberok
Molecules 2023, 28(6), 2509; https://doi.org/10.3390/molecules28062509 - 9 Mar 2023
Cited by 5 | Viewed by 3598
Abstract
Cancer cells need to carefully regulate their metabolism to keep them growing and dividing under the influence of different nutrients and oxygen levels. Muscle isoform 2 of pyruvate kinase (PKM2) is a key glycolytic enzyme involved in the generation of ATP and is [...] Read more.
Cancer cells need to carefully regulate their metabolism to keep them growing and dividing under the influence of different nutrients and oxygen levels. Muscle isoform 2 of pyruvate kinase (PKM2) is a key glycolytic enzyme involved in the generation of ATP and is critical for cancer metabolism. PKM2 is expressed in many human tumors and is regulated by complex mechanisms that promote tumor growth and proliferation. Therefore, it is considered an attractive therapeutic target for modulating tumor metabolism. Various modulators regulate PKM2, shifting it between highly active and less active states. In the presented work, a series of 8-quinolinesulfonamide derivatives of PKM2 modulators were designed using molecular docking and molecular dynamics techniques. New compounds were synthesized using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Compound 9a was identified in in silico studies as a potent modulator of muscle isoform 2 of pyruvate kinase. The results obtained from in vitro experiments confirmed the ability of compound 9a to reduce the intracellular pyruvate level in A549 lung cancer cells with simultaneous impact on cancer cell viability and cell-cycle phase distribution. Moreover, compound 9a exhibited more cytotoxicity on cancer cells than normal cells, pointing to high selectivity in the mode of action. These findings indicate that the introduction of another quinolinyl fragment to the modulator molecule may have a significant impact on pyruvate levels in cancer cells and provides further directions for future research to find novel analogs suitable for clinical applications in cancer treatment. Full article
(This article belongs to the Special Issue Advancement in Design and Synthesis of Novel Drugs)
Show Figures

Figure 1

11 pages, 3141 KiB  
Article
Discovery of Novel 3,4-Dihydro-2(1H)-Quinolinone Sulfonamide Derivatives as New Tubulin Polymerization Inhibitors with Anti-Cancer Activity
by Juan Ma and Guo-Hua Gong
Molecules 2022, 27(5), 1537; https://doi.org/10.3390/molecules27051537 - 24 Feb 2022
Cited by 1 | Viewed by 2688
Abstract
In this paper, a small series of novel quinoline sulfonamide derivatives was synthesized, and their structure of the target compounds were confirmed by 1H NMR and MS. The screening of the news target compounds’ in vitro cytotoxic activities against tumor cell lines by [...] Read more.
In this paper, a small series of novel quinoline sulfonamide derivatives was synthesized, and their structure of the target compounds were confirmed by 1H NMR and MS. The screening of the news target compounds’ in vitro cytotoxic activities against tumor cell lines by the MTT method was performed. Among them, compound D13 (N-(4-methoxybenzyl)-2-oxo-N-(3,4,5-trimethoxyphenyl)-1,2,3,4-tetrahydroquinoline-6-sulfonamide exhibited the strongest inhibitory effect on the proliferation of HeLa (IC50: 1.34 μM), and this value correlated well with the inhibitory activities of the compound against tubulin polymerization (IC50: 6.74 μM). In summary, a new type of quinoline-sulfonamide derivative with tubulin polymerization inhibitory activity was discovered, and it can be used as a lead compound for further modification. Full article
Show Figures

Figure 1

14 pages, 1066 KiB  
Article
Synthesis and Evaluation of Chalcone-Quinoline Based Molecular Hybrids as Potential Anti-Malarial Agents
by Bonani Vinindwa, Godwin Akpeko Dziwornu and Wayiza Masamba
Molecules 2021, 26(13), 4093; https://doi.org/10.3390/molecules26134093 - 5 Jul 2021
Cited by 23 | Viewed by 4023
Abstract
Molecular hybridization is a drug discovery strategy that involves the rational design of new chemical entities by the fusion (usually via a covalent linker) of two or more drugs, both active compounds and/or pharmacophoric units recognized and derived from known bioactive molecules. The [...] Read more.
Molecular hybridization is a drug discovery strategy that involves the rational design of new chemical entities by the fusion (usually via a covalent linker) of two or more drugs, both active compounds and/or pharmacophoric units recognized and derived from known bioactive molecules. The expected outcome of this chemical modification is to produce a new hybrid compound with improved affinity and efficacy compared to the parent drugs. Additionally, this strategy can result in compounds presenting modified selectivity profiles, different and/or dual modes of action, reduced undesired side effects and ultimately lead to new therapies. In this study, molecular hybridization was used to generate new molecular hybrids which were tested against the chloroquine sensitive (NF54) strain of P. falciparum. To prepare the new molecular hybrids, the quinoline nucleus, one of the privileged scaffolds, was coupled with various chalcone derivatives via an appropriate linker to produce a total of twenty-two molecular hybrids in 11%–96% yield. The synthesized compounds displayed good antiplasmodial activity with IC50 values ranging at 0.10–4.45 μM. Full article
(This article belongs to the Special Issue Quinolones: Chemistry and Biological Activities)
Show Figures

Graphical abstract

13 pages, 3070 KiB  
Communication
Hybrid Quinoline-Sulfonamide Complexes (M2+) Derivatives with Antimicrobial Activity
by Dumitrela Diaconu, Violeta Mangalagiu, Dorina Amariucai-Mantu, Vasilichia Antoci, Cristian Levente Giuroiu and Ionel I. Mangalagiu
Molecules 2020, 25(12), 2946; https://doi.org/10.3390/molecules25122946 - 26 Jun 2020
Cited by 19 | Viewed by 4793
Abstract
Two new series of hybrid quinoline-sulfonamide complexes (M2+: Zn2+, Cu2+, Co2+ and Cd2+) derivatives (QSC) were designed, synthesized and tested for their antimicrobial activity. The synthesis is straightforward and efficient, involving two [...] Read more.
Two new series of hybrid quinoline-sulfonamide complexes (M2+: Zn2+, Cu2+, Co2+ and Cd2+) derivatives (QSC) were designed, synthesized and tested for their antimicrobial activity. The synthesis is straightforward and efficient, involving two steps: acylation of aminoquinoline followed by complexation with metal acetate (Cu2+, Co2+ and Cd2+) or chloride (Zn2+). The synthesized QSC compounds were characterized by FTIR and NMR spectroscopy and by X-ray diffraction on single crystal. The QSC compounds were preliminary screened for their antibacterial and antifungal activity and the obtained results are very promising. In this respect, the hybrid N-(quinolin-8-yl)-4-chloro-benzenesulfonamide cadmium (II), considered as leading structure for further studies, has an excellent antibacterial activity against Staphylococcus aureus ATCC25923 (with a diameters of inhibition zones of 21 mm and a minimum inhibitory concentration (MIC) of 19.04 × 10−5 mg/mL), a very good antibacterial activity against Escherichia coli ATCC25922 (with a diameters of inhibition zones of 19 mm and a MIC of 609 × 10−5 mg/mL), and again an excellent antifungal activity against Candida albicans ATCC10231 (with a diameters of inhibition zones of 25 mm and a MIC of 19.04 × 10−5 mg/mL). Full article
Show Figures

Graphical abstract

19 pages, 5209 KiB  
Article
Synthesis, Anti-Breast Cancer Activity, and Molecular Docking Study of a New Group of Acetylenic Quinolinesulfonamide Derivatives
by Krzysztof Marciniec, Bartosz Pawełczak, Małgorzata Latocha, Leszek Skrzypek, Małgorzata Maciążek-Jurczyk and Stanisław Boryczka
Molecules 2017, 22(2), 300; https://doi.org/10.3390/molecules22020300 - 16 Feb 2017
Cited by 20 | Viewed by 7952
Abstract
In this study, a series of regioisomeric acetylenic sulfamoylquinolines are designed, synthesized, and tested in vitro for their antiproliferative activity against three human breast cacer cell lines (T47D, MCF-7, and MDA-MB-231) and a human normal fibroblast (HFF-1) by 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) [...] Read more.
In this study, a series of regioisomeric acetylenic sulfamoylquinolines are designed, synthesized, and tested in vitro for their antiproliferative activity against three human breast cacer cell lines (T47D, MCF-7, and MDA-MB-231) and a human normal fibroblast (HFF-1) by 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) assay. The antiproliferative activity of the tested acetylenic quinolinesulfonamides is comparable to that of cisplatin. The bioassay results demonstrate that most of the tested compounds show potent antitumor activities, and that some compounds exhibit better effects than the positive control cisplatin against various cancer cell lines. Among these compounds, 4-(3-propynylthio)-7-[N-methyl-N-(3-propynyl)sulfamoyl]quinoline shows significant antiprolierative activity against T47D cells with IC50 values of 0.07 µM. In addition, 2-(3-Propynylthio)-6-[N-methyl-N-(3-propynyl)sulfa-moyl]quinoline and 2-(3-propynylseleno)-6-[N-methyl-N-(3-propynyl)sulfamoyl]quinoline display highly effective atitumor activity against MDA-MB-231 cells, with IC50 values of 0.09 and 0.50 µM, respectively. Furthermore, most of the tested compounds show a weak cytotoxic effect against the normal HFF-1 cell line. Additionally, in order to suggest a mechanism of action for their activity, all compounds are docked into the binding site of two human cytochrome P450 (CYP) isoenzymes. These data indicate that some of the title compounds display significant cytotoxic activity, possibly targeting the CYPs pathways. Full article
(This article belongs to the Special Issue Sulfonamides)
Show Figures

Graphical abstract

Back to TopTop