Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = quarkyonic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 907 KB  
Review
Phase Diagram of Dense Two-Color QCD at Low Temperatures
by Victor V. Braguta
Symmetry 2023, 15(7), 1466; https://doi.org/10.3390/sym15071466 - 24 Jul 2023
Cited by 10 | Viewed by 2470
Abstract
This review is devoted to the modern understanding of the two-color QCD phase diagram at finite baryon density and low temperatures. First, we consider the theoretical picture of this phase diagram. It is believed that at low baryon density, two-color QCD can be [...] Read more.
This review is devoted to the modern understanding of the two-color QCD phase diagram at finite baryon density and low temperatures. First, we consider the theoretical picture of this phase diagram. It is believed that at low baryon density, two-color QCD can be described by chiral perturbation theory (ChPT), which predicts a second-order phase transition with Bose-Einstein condensation of diquarks at μ=mπ/2. At larger baryon chemical potentials, the interactions between baryons become important, and ChPT is not applicable anymore. At sufficiently large baryon chemical potential, the Fermi sphere composed of quarks is formed, and diquarks are condensed on the surface of this sphere. In this region, two-color baryon matter reveals properties similar to those of the Quarkyonic phase. Particular attention in this review is paid to lattice studies of dense two-color QCD phase diagram. In the low-density region, the results of lattice studies are in agreement with ChPT predictions. At sufficiently large baryon densities, lattice studies observe a Fermi sphere composed of quarks and condensation of diquarks on its surface. Thus, available lattice studies support most of the theoretical predictions. Finally, we discuss the status of the deconfinement in cold dense two-color matter, which was observed in lattice simulation with staggered fermions. Full article
(This article belongs to the Special Issue Review on Quantum Field Theory)
Show Figures

Figure 1

7 pages, 3979 KB  
Article
Quark Matter at High Baryon Density, Conformality and Quarkyonic Matter
by Larry McLerran
Symmetry 2023, 15(6), 1150; https://doi.org/10.3390/sym15061150 - 25 May 2023
Cited by 1 | Viewed by 1976
Abstract
This paper discusses high-baryon-density quarkyonic matter in the context of recent observations concerning neutron stars and the qualitative reasons why quarkyonic matter explains certain features of the equation of state that arises from these observations. The paper then provides a qualitative discussion of [...] Read more.
This paper discusses high-baryon-density quarkyonic matter in the context of recent observations concerning neutron stars and the qualitative reasons why quarkyonic matter explains certain features of the equation of state that arises from these observations. The paper then provides a qualitative discussion of the quarkyonic hypotheses, and the essential features of quarkyonic matter that explain the outstanding features of the equation of state. Full article
(This article belongs to the Special Issue Heavy-Ion Collisions and Multiparticle Production)
Show Figures

Figure 1

15 pages, 782 KB  
Article
Radial Oscillations in Neutron Stars from Unified Hadronic and Quarkyonic Equation of States
by Souhardya Sen, Shubham Kumar, Athul Kunjipurayil, Pinku Routaray, Sayantan Ghosh, Probit J. Kalita, Tianqi Zhao and Bharat Kumar
Galaxies 2023, 11(2), 60; https://doi.org/10.3390/galaxies11020060 - 19 Apr 2023
Cited by 23 | Viewed by 4358
Abstract
We study radial oscillations in non-rotating neutron stars by considering the unified equation of states (EoSs), which support the 2 M star criterion. We solve the Sturm–Liouville problem to compute the 20 lowest radial oscillation modes and their eigenfunctions for a neutron [...] Read more.
We study radial oscillations in non-rotating neutron stars by considering the unified equation of states (EoSs), which support the 2 M star criterion. We solve the Sturm–Liouville problem to compute the 20 lowest radial oscillation modes and their eigenfunctions for a neutron star modeled with eight selected unified EoSs from distinct Skyrme–Hartree–Fock, relativistic mean field and quarkyonic models. We compare the behavior of the computed eigenfrequency for an NS modeled with hadronic to one with quarkyonic EoSs while varying the central densities. The lowest-order f-mode frequency varies substantially between the two classes of the EoS at 1.4 M but vanishes at their respective maximum masses, consistent with the stability criterion M/ρc>0. Moreover, we also compute large frequency separation and discover that higher-order mode frequencies are significantly reduced by incorporating a crust in the EoS. Full article
(This article belongs to the Special Issue The 10th Anniversary of Galaxies: The Astrophysics of Neutron Stars)
Show Figures

Figure 1

10 pages, 1353 KB  
Article
Density-Induced Hadron–Quark Crossover via the Formation of Cooper Triples
by Hiroyuki Tajima, Shoichiro Tsutsui, Takahiro M. Doi and Kei Iida
Symmetry 2023, 15(2), 333; https://doi.org/10.3390/sym15020333 - 25 Jan 2023
Cited by 6 | Viewed by 2512
Abstract
We discuss the hadron–quark crossover accompanied by the formation of Cooper triples (three-body counterpart of Cooper pairs) by analogy with the Bose–Einstein condensate to Bardeen–Cooper–Schrieffer crossover in two-component fermionic systems. Such a crossover is different from a phase transition, which often involves symmetry [...] Read more.
We discuss the hadron–quark crossover accompanied by the formation of Cooper triples (three-body counterpart of Cooper pairs) by analogy with the Bose–Einstein condensate to Bardeen–Cooper–Schrieffer crossover in two-component fermionic systems. Such a crossover is different from a phase transition, which often involves symmetry breaking. We calculate the in-medium three-body energy from the three-body T-matrix with a phenomenological three-body force characterizing a bound hadronic state in vacuum. With increasing density, the hadronic bound-state pole smoothly undergoes a crossover toward the Cooper triple phase where the in-medium three-body clusters coexist with the quark Fermi sea. The relation to the quarkyonic matter model can also be found in a natural manner. Full article
(This article belongs to the Special Issue Advances in Nuclear Astrophysics and Symmetry)
Show Figures

Figure 1

6 pages, 239 KB  
Communication
Nuclear Matter in 1 + 1 Dimensions
by Robert D. Pisarski, Marton Lajer, Alexei M. Tsvelik and Robert M. Konik
Universe 2021, 7(11), 411; https://doi.org/10.3390/universe7110411 - 29 Oct 2021
Cited by 1 | Viewed by 1745
Abstract
We review the solution of QCD in two spacetime dimensions. Following the analysis of Baluni, for a single flavor, the model can be analyzed using Abelian bosonization. The theory can be analyzed in strong coupling, when the quarks are much lighter than the [...] Read more.
We review the solution of QCD in two spacetime dimensions. Following the analysis of Baluni, for a single flavor, the model can be analyzed using Abelian bosonization. The theory can be analyzed in strong coupling, when the quarks are much lighter than the gauge coupling. In this limit, the theory is given by a Luttinger liquid. Full article
Back to TopTop