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Abstract: This paper discusses high-baryon-density quarkyonic matter in the context of recent
observations concerning neutron stars and the qualitative reasons why quarkyonic matter explains
certain features of the equation of state that arises from these observations. The paper then provides a
qualitative discussion of the quarkyonic hypotheses, and the essential features of quarkyonic matter
that explain the outstanding features of the equation of state.
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1. Introduction

The physics of high-energy-density matter and heavy-ion collisions has been thor-
oughly developed over the past 40 years. The recent developments associated with the
quarkyonic hypothesis will be discussed, concerning the properties of matter at high baryon
density and low temperature. Such matter may occur in neutron stars and intermediate-
energy nuclear collisions. There is a wealth of exciting new information concerning neutron
stars coming from gravitational wave experiments and neutron star radii measurements,
providing strong constraints on the properties of such matter. Furthermore, there is the
possibility of extracting complementary information from existing facilities by colliding
intermediate-energy heavy ions.

The purpose of this paper is to discuss the motivations of the quarkyonic hypothesis
based on the theory of strong interactions, QCD, and the properties of recent neutron
star observations. First, recent neutron star observations are discussed, in particular, the
extracted equation of state and its conformal properties. Next, the quarkyonic hypothesis is
proposed and argued that it has the properties needed to describe the qualitative features
of the equation of state. Then, the recently conjectured possible experimental probes in
low-energy heavy-ion experiments are discussed. The paper ends with a brief outline
of some important theoretical issues which are currently poorly understood concerning
quarkyonic matter.

The purpose of this paper is to not only provide a comprehensive review of the proper-
ties of high-density, low-temperature baryonic matter, but to also provide a simple and qual-
itative description of quarkyonic matter and its implications in light of recent observations.

2. The Importance of Neutron Star Studies in Nuclear Physics

The measurements of neutron stars can provide their radii and masses, and in the
case of gravitational wave detection, constraints on the quadrupole deformability. These
properties can be determined by knowing an equation of state,

P = P(ε) (1)

where the energy density of cold matter is ε and the pressure is P. The equation of state
plus the Tolman–Oppenheimer–Volkov equation and the general relativistic equation of
hydrostatic equilibrium, can determine these quantities. The equation of state needs to be
known up to an energy density one order of magnitude greater than that of nuclear matter.
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For energy densities twice the nuclear matter energy density, the equation of state
is determined by low-energy nuclear theory, and its generalizations involving effective
field theory. At two orders of magnitude greater than the nuclear matter energy density,
the equation of state is that of quarks, and is determined by QCD computations [1,2]. At
intermediate-energy densities, the equation of state is known from first principle compu-
tations. Nevertheless, combining the neutron star observations together with the known
properties at high- and low-energy density, it is possible to obtain a good determination of
the equation of state.

This empirically determined equation of state is important [3–7]. At nuclear matter den-
sity, matter is a non-relativistic liquid of nucleons with a sound velocity v2

s ∼ 10−2 − 10−1.
To describe neutron stars by a density four times that of nuclear matter, the sound velocity
is v2

s ≥ 1/3, where v2
s = 1/3 is the limit for a relativistic ideal gas. There are indications that

the sound velocity exceeds 1/3 in this region. This transition from a non-relativistic fluid
to an ultra-relativistic system occurs over a very small range of change of typical particle
separation, r/r0 ∼ (ρ/ρ0)

−1/3 ∼ 1.6, such that the transition occurs incredibly rapidly.
The computation of the sound velocity as a function of density [8] is shown in Figure 1.

This computation involves many fits to neutron star data, and the probability distribution
for various sound velocities is shown (Figure 1).
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FIG. 1: Probability density functions (PDFs) of the speed of sound (left panel) and trace anomaly

(right panel) as functions of the energy density. Vertical lines show the median and 1σ credibility

region for the position of the peak in c2s (green solid and dotted lines), values at the center of

maximally massive NSs (blue solid and dashed lines), and the position of the peak in χB (purple

solid and dash-dotted lines). Horizontal, black lines show mark the conformal values of c2s = 1/3

(left panel) and ∆ = 0 (right panel)[8].

because of the asymptotic freedom property of QCD, but this observed precocious scaling of

dense matter is quite remarkable. In Fig 2, a contour plot extracted from analysis of fits to

neutron star equations of state in the cores of neutron stars is shown, and it is remarkable

that values center around the scale invariant results of v2s = 1/3 and ∆ = 0.

The trace anomaly and the sound velocity are related by

v2s =
1

3
−∆− εd∆

dε
. (3)

The fact that the sound velocity is large at relatively low density is therefore another indi-

cation that the matter is extremely rapidly approaching the scale invariant limit ∆ = 0.

III. STRONGLY INTERACTING MATTER AND THE QUARKYONIC HY-

POTHESIS

The indications described above suggest that perhaps matter rapidly approaches an al-

most conformally invariant distribution of quarks and gluons at density of about one order

of magnitude larger than the density of nuclear matter. Suppose that matter converts be-

tween a system of nucleons and a system of quarks at some almost fixed baryon density.

I will consider the case of isospin zero matter for simplicity, and made only of neutrons

4

Figure 1. Probability density functions (PDFs) of the speed of sound (left panel) and trace anomalies
(right panel) as functions of the energy density. Vertical lines represent the median and 1σ credibility
region for the peak position in c2

s (green solid and dotted lines), values at the centre of maximally
massive neutron stars (blue solid and dashed lines), and the peak position in χB (purple solid and
dash-dotted lines). Horizontal, black lines show the conformal values of c2

s = 1/3 (left panel) and
∆ = 0 (right panel) [8].

Another dimensionless parameter that characterizes the equation of state is the trace
anomaly scaled by the energy density [9],

∆ =
1
3
− P

ε
. (2)

The trace anomaly is a measure of the deviation from the scale invariance. Determination
of the scaled trace anomaly is shown in Figure 1. It is notable that the approximate scale
invariance can be achieved at densities found inside neutron stars, particularly because
at such densities it is commonly believed that nuclear matter still strongly interacts. Of
course, quark matter must asymptotically become scale invariant because of the asymptotic
freedom property of QCD; however, this observed precocious scaling of dense matter is
quite remarkable. In Figure 2, a contour plot extracted from the analysis of fits to neutron
star equations of state in neutron star cores is shown. It is notable that the values centre
around the scale invariant v2

s = 1/3 and ∆ = 0.
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FIG. 2: Probability density function (PDF) of the trace anomaly vs the speed of sound at the center

of maximally stable NSs. The dotted, blue ellipse marks the 1σ credibility around the mean. The

black horizontal and vertical lines mark the conformal values[8].

and protons ( or up and down quarks). To qualitatively understand this transition, let us

consider free gasses. The fermi momenta are denoted as kNF and kQF for nucleons and quarks

respectively. We will take the number of colors of quarks as a parameter to illustrate some

of the point we wish to make. Since a nucleon is composed of Nc quarks, we might naively

expect that kNF = Nck
Q
F . On the other hand the baryon number density is

nB ∼ (kNF )3 ∼ (kQF )3. (4)

If we take the Fermi momenta of nucleonic matter at a few times nuclear matter density to

be of order ΛQCD, then in the quark matter phase, the Fermi momenta of quarks is also of

order ΛQCD and if we try to imagine nucleons made of quarks in this new phase, then they

would be relativistic. How can matter make such a drastic change?

A way to resolve such a paradoxical situation is through Quarkyonic matter[10],[11]. In

QCD, nucleons are of course made of quarks, and discussing which degrees of freedom are

quarks and which are nucleons reflect the approximations one wishes to make. At low baryon

density, it is a good approximation to treat nucleons as a Fermi gas of nucleons. Nucleons
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Figure 2. Probability density function (PDF) of the trace anomaly vs. the speed of sound at the centre
of maximally stable neutron stars. The dotted blue ellipse marks the 1σ credibility around the mean.
The black horizontal and vertical lines mark the conformal values [8].

The trace anomaly and sound velocity are related by

v2
s =

1
3
− ∆− ε

d∆
dε

. (3)

The fact that the sound velocity is large at relatively low densities is therefore another
indication that the matter is extremely rapidly approaching the scale invariant limit ∆ = 0.

3. Strongly Interacting Matter and the Quarkyonic Hypothesis

The indications described above suggest that matter rapidly approaches an almost
conformally invariant distribution of quarks and gluons at densities of about one order
of magnitude greater than the density of nuclear matter. Suppose that matter converts
between a system of nucleons and quarks at some fixed baryon density. Here the case of
isospin zero matter is considered for simplicity, and made from neutrons and protons only
(or up and down quarks). To qualitatively understand this transition, let us consider free
gasses. The Fermi momenta are denoted as kN

F and kQ
F for nucleons and quarks, respectively.

We will take the number of quark colours as a parameter to illustrate this point. Since a
nucleon is composed of Nc quarks, we might naively expect that kN

F = NckQ
F . On the other

hand, the baryon number density is

nB ∼ (kN
F )

3 ∼ (kQ
F )

3. (4)

If we take the Fermi momenta of nucleonic matter at a few times the nuclear matter
density to be of order ΛQCD, then in the quark matter phase, the Fermi momenta of quarks
is also of order ΛQCD and if we try to imagine nucleons made of quarks in this new phase,
then they would be relativistic. How can matter make such a drastic change?

A way to resolve such a paradoxical situation is through quarkyonic matter [10,11]. In
QCD, nucleons are made of quarks, and discussing which degrees of freedom are quarks
and nucleons reflect the desired approximations. At low baryon density, it is a good
approximation to treat nucleons as a Fermi gas of nucleons as they occupy low-momentum
states. These nucleons are composed of quarks, but the quarks are spread over a momentum
scale, which at low momentum is of the order of the QCD scale. However, as one adds
more nucleons, these quark states approach an occupation number of order one and this
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fills the quark states up to a Fermi energy of order of the QCD scale. New nucleons need
to be added, but to avoid Pauli blocking of the quarks, they must be added at the Fermi
surface corresponding to a nucleon energy of order NcΛQCD. The nucleons and quarks at
this point are relativistic. Therefore, there is a transition at a density of order Λ3

QCD, where
the degrees of freedom change rapidly from non-relativistic to relativistic.

One can understand quarkyonic matter at high densities, as a Fermi sea of quarks is
approximately filled with a Fermi surface of nucleons. However, quark–hadron duality
requires that we look at this situation a little closer [12]. A filled Fermi sea of quarks will
comprise one baryon for each Nc quarks. It takes Nc quarks to make one baryon. However,
at a nucleon momentum of order Nckquark, the occupation number of a filled Fermi gas is
N3

c times the occupation number of a quark because the De Broglie wavelength of a nucleon
is 1/Nc compared to a quark. Therefore, the nucleon occupation number with kN = NckQ
composed of quarks in the Fermi sea is 1/N3

c . This is true until one approaches the Fermi
surface for quarks. Here, one can completely fill nucleon states close to the Fermi energy,
kN

F = NckQ
F . The quark constituents are spread out in momentum above the Fermi sea

because of the intrinsic momentum of quarks inside the nucleon, making a Fermi surface
for quarks whose width is ∆k ∼ ΛQCD. Therefore, the picture of quarks that arises is a
filled Fermi sea of quarks with a Fermi surface of width ΛQCD. This can also be thought
of in terms of nucleons as an under-occupied distribution of nucleons with an occupation
number of order 1/N3

c followed by this surface of fully occupied nucleons. The nucleon
distribution is linked with the quark distribution. This is the under-occupied distribution
of nucleons that corresponds to a filled Fermi sea.

Let us summarize this argument in a slightly different way. When we think about
quarkyonic matter we must have a dual picture in mind. One picture is the distribution of
quarks and the other is the distribution of nucleons. These pictures must be consistent with
one another. The quark distribution is a filled Fermi sea of quarks plus a tail above some
momentum that falls to zero. In the tail, the occupation number of quarks falls to zero, and
its width is of order of the scale of quark momentum in the nucleon wavefunction. In this
tail, we can fit nucleon states up to some saturation density. The total density of nucleons is
of the same order as when the quark sea first appears, but the local phase space density
of nucleons, dnN/d3k, is saturated and of order 1. Thus, the nucleons form a shell with a
typical momentum kF

N ∼ NCkN
q . On the other hand, in the quark sea the total quark density

is of order (kF
q )

3, and if the nucleons are composed of quarks their baryon density must be
that of the quarks, requiring a suppression of the phase space density of nucleons because
nN ∼ (kF

N)
3/N3

C ∼ (kF
q )

3. Therefore, the bulk distribution of nucleons with momentum
less than the nucleon shell is suppressed.

One can model such a picture in various ways to develop a concrete picture with these
features [13]. It is also possible to develop explicit quantum mechanical computations of
dual description of quarks and nucleons which exhibit these features [14]. The phenomeno-
logical model of McLerran and Reddy proposes that nucleons exist on a shell in momentum
space whose thickness is determined so that the density of nucleons is fixed at some value
above that of nuclear matter [13]. The Fermi sea of quarks and gluons sit below this shell.
In the computations of Fujimoto, McLerran and Tojo, the general features of this model are
reproduced in a quantum mechanical computation where nucleons are explicitly composed
of quarks, and the occupation numbers of the quark and gluon states are constrained to
be between zero and one [14]. The rapid rise in the sound velocity is attributed to the
transition to quarkyonic matter that occurs when quark occupation numbers approach
one. Similar features are extracted from excluded volume models of nuclear matter, where
the overlaps of hard cores may be thought of as corresponding to the density at which
the occupation numbers of quarks approach one, and the origin of the hard core repulsive
interaction is the Fermi exclusion of filled quark states [15].

The reason the sound velocity increases rapidly in the quarkyonic compared to the
nucleonic phase is easily understood. The typical Fermi momentum for a density corre-
sponding to the nuclear matter density is of order ΛQCD. Therefore, the sound velocity
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squared in nuclear matter is of order v2
s ∼ Λ2

QCD/M2
N ∼ 1/N2

c . For quarkyonic matter
it is v2

s ∼ Λ2
QCD/M2

q ∼ 1, meaning the ratio of sound velocities is of order 1/N2
c . The

transition occurs at approximately a constant baryon density; therefore, the sound velocity
and equation of state change quickly from a soft equation of state to a hard equation of state.
In models, this change can sometimes correspond to a peak in the sound velocity [13,14].

To summarize, it is possible to reproduce features of the equation of state inferred from
neutron star observations using a quarkyonic description. The rapid change in the sound velocity
occurs when the matter becomes quarkyonic. At this point, the degrees of freedom become
relativistic, although approximate scale invariance is acquired at higher densities.

There is an issue about how one thinks about the transition to quarkyonic matter.
Indeed, such a transition might be thought of as a phase transition to quarks. However, it is
not a first- or second-order transition, since the sound velocity does not tend to zero at the
transition. Indeed, the sound velocity increases rapidly. In fact, the transition is probably
not due to de-confinement, since in the large Nc limit the Debye screening length is

r2
Debye ∼ Nc/(kF

q )
2. (5)

This is because Debye screening is induced by a one-loop effect, and at a temperature
of zero, such a loop can only be made of quarks, supressing the diagram by a factor of Nc.
Therefore, the Debye screening length only becomes of the order of the QCD scale when
kF

q ∼
√

NcΛQCD. On the other hand, the quarkyonic transition occurs at lower density when
kF

q ∼ ΛQCD. Of course, for Nc = 3 it is possible that these transitions are poorly separated.

4. Accelerator Experiments and High-Density Baryonic Matter

One should also ask what can be learned from systematic accelerator studies. One
question to address is how one might measure a rapidly varying sound velocity as a function
of baryon density at low temperatures. This restricts one to low-energy experiments
with low-energy accelerators, such as GSI, FAIR, FRIB or RHIC. Two suggestions have
been made.

The first involves measuring fluctuations in the baryon number [16]. With a cumulant
of the baryon number distribution defined as

κj =<< (nB − < nB >)j >> . (6)

This can be rewritten in terms of thermodynamic quantities as

κj = VT j−1 djP

dµ
j
B

. (7)

where T is the temperature, µB the baryon number chemical potential, and P is the pressure.
These can be combined together at low temperature to give

d ln v2
s

d ln nB
+ v2

s = 1− κ1κ3

κ2
2

. (8)

Another suggested method is to determine the sound velocity transport computations.
This is easily performed for vector mean field models, where the sound velocity is directly
related to the strength of the mean field [17]. The mean field vector potential is the chemical
potential for the baryon number. However,

v2
s =

nB
µBdnB/dµB

(9)

and therefore

µB = µB(n0
B)exp

(∫ nB

n0
B

dn′
v2

s (n′)
n′

)
(10)
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such that the effects of the vector field can be known from the dependence of the sound
velocity on the density.

While the results of such analyses [16,17] are suggestive that there may be large sound
velocities achieved at low densities, our understanding is still in its early stages, and with
time this will increase. The results presented here are interesting. The sound velocity
squared is first seen to decrease and then approach unity at a density close to that of
nuclear matter. This is different from the studies on neutron stars. Neutron stars have an
isospin to baryon number of near 1/2 while nuclear matter is closer to zero, so there is no a
priori contradiction.

5. Theoretical Issues

Among the theoretical issues, the following are most important:
Can one develop a transport theory method of computations which allows quarkyonic

matter to form at high baryon densities in relativistic nuclei collisions? To do this one needs
to impose constraints on the nucleon and quark occupation numbers. Perhaps one could
simulate nucleonic collisions and then compute the quark content, imposing quark and
nucleon occupation numbers between zero and one. This would be sufficient to compute
the equation of state for systems that are time-independent. In such a dynamic system, an
important issue would be to see how the occupation numbers are distributed and evolve.

Another important question concerns the isospin dependence of the equation of state.
For neutron matter, the isospin per nucleon is 1/2, while for nuclear matter it is zero. In
principle, the equation of state may be very different for such systems. It might be that the
inferred properties from the equation of state of neutron matter is qualitatively different
from the inferred collisions of nuclei with low isospin per nucleon.

How does chiral symmetry manifest in quarkyonic matter? Theoretical studies have
been carried out that show the pattern of chiral symmetry restoration may be quite
arcane [18]. How does one clearly model such matter? Are there consequences at den-
sities found for neutron stars or accelerator collisions?

How does one generalize quarkyonic matter from a temperature of zero to finite
density [19]? This is important to describe low-energy heavy-ion collisions and for the
collision dynamics of neutron star collisions.

How does one use field theoretical methods, such as mean field theory, to dynamically
demonstrate the formation of quarkyonic matter [20,21]?
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