Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = quarkonia suppression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5465 KiB  
Review
Towards Experimental Confirmation of Quarkonia Melting in Quark–Gluon Plasma: A Review of Recent Measurements of Quarkonia Production in Relativistic Heavy-Ion Collisions
by Kara R. Mattioli
Symmetry 2024, 16(2), 225; https://doi.org/10.3390/sym16020225 - 13 Feb 2024
Cited by 1 | Viewed by 1472
Abstract
The dissociation, or “melting”, of heavy quarkonia states due to color charge screening is a predicted signature of quark–gluon plasma (QGP) formation, with a quarkonium state predicted to dissociate when the temperature of the medium is higher than the binding energy of the [...] Read more.
The dissociation, or “melting”, of heavy quarkonia states due to color charge screening is a predicted signature of quark–gluon plasma (QGP) formation, with a quarkonium state predicted to dissociate when the temperature of the medium is higher than the binding energy of the quarkonium state. A conclusive experimental observation of quarkonium melting coupled with a detailed theoretical understanding of the melting mechanism would enable the use of quarkonia states as temperature probes of the QGP, a long-sought goal in the field of relativistic heavy-ion collisions. However, the interpretation of quarkonia suppression measurements in heavy-ion collisions is complicated by numerous other cold nuclear matter effects that also result in the dissociation of bound quarkonia states. A comprehensive understanding of these cold nuclear matter effects is therefore needed in order to correctly interpret quarkonia production measurements in heavy-ion collisions and to observe the melting of quarkonium states experimentally. In this review, recent measurements of quarkonia production in pA and AA collisions and their state-of-the-art theoretical interpretations will be discussed, as well as the future measurements needed to further the knowledge of cold nuclear matter effects and realize a measurement of quarkonia melting in heavy-ion collisions. Full article
Show Figures

Figure 1

30 pages, 1801 KiB  
Review
Aspects of Relativistic Heavy-Ion Collisions
by Georg Wolschin
Universe 2020, 6(5), 61; https://doi.org/10.3390/universe6050061 - 30 Apr 2020
Cited by 7 | Viewed by 4639
Abstract
The rapid thermalization of quarks and gluons in the initial stages of relativistic heavy-ion collisions is treated using analytic solutions of a nonlinear diffusion equation with schematic initial conditions, and for gluons with boundary conditions at the singularity. On a similarly short time [...] Read more.
The rapid thermalization of quarks and gluons in the initial stages of relativistic heavy-ion collisions is treated using analytic solutions of a nonlinear diffusion equation with schematic initial conditions, and for gluons with boundary conditions at the singularity. On a similarly short time scale of t 1 fm/c, the stopping of baryons is accounted for through a QCD-inspired approach based on the parton distribution functions of valence quarks, and gluons. Charged-hadron production is considered phenomenologically using a linear relativistic diffusion model with two fragmentation sources, and a central gluonic source that rises with ln 3 ( s N N ) . The limiting-fragmentation conjecture that agrees with data at energies reached at the Relativistic Heavy-Ion Collider (RHIC) is found to be consistent with Large Hadron Collider (LHC) data for Pb-Pb at s N N = 2.76 and 5.02 TeV. Quarkonia are used as hard probes for the properties of the quark-gluon plasma (QGP) through a comparison of theoretical predictions with recent CMS, ALICE and LHCb data for Pb-Pb and p-Pb collisions. Full article
(This article belongs to the Special Issue Heavy Ion Collisions)
Show Figures

Figure 1

5 pages, 381 KiB  
Proceeding Paper
Measurements of the Υ Meson Production in Au + Au Collisions by the STAR Experiment
by Oliver Matonoha
Proceedings 2019, 10(1), 46; https://doi.org/10.3390/proceedings2019010046 - 5 May 2019
Viewed by 1395
Abstract
In ultra-relativistic heavy-ion collisions, creation of a novel state of matter, the quark-gluon plasma (QGP), has been observed. Suppressed production of quarkonia, caused by the colour screening of the binding force, has been proposed as a direct evidence of the QGP formation. At [...] Read more.
In ultra-relativistic heavy-ion collisions, creation of a novel state of matter, the quark-gluon plasma (QGP), has been observed. Suppressed production of quarkonia, caused by the colour screening of the binding force, has been proposed as a direct evidence of the QGP formation. At RHIC energies, other phenomena such as the regeneration and co-mover absorption, are expected to have a small effect for the bottomonium family, which makes Υ a cleaner probe of the screening effect compared to the J / ψ meson. In these proceedings, the latest measurements of the Υ production suppression in Au + Au collisions at s NN = 200 GeV via the di-muon and di-electron decay channels by the STAR experiment at RHIC are presented and compared with data from the LHC and theoretical calculations. Moreover, Υ production measurements in p + p and p + Au collisions are also reported, providing a baseline and a quantification of the cold nuclear matter effects, respectively. Full article
Show Figures

Figure 1

Back to TopTop