Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = quantum well hybrid laser

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4600 KiB  
Article
Rhodamine 6G/Transition Metal Dichalcogenide Hybrid Nanoscrolls for Enhanced Optoelectronic Performance
by Huihui Ye, Hailun Tang, Shilong Yu, Yang Yang and Hai Li
Molecules 2024, 29(12), 2799; https://doi.org/10.3390/molecules29122799 - 12 Jun 2024
Cited by 2 | Viewed by 1402
Abstract
The low light absorption efficiency has seriously hindered the application of two-dimensional transition metal dichalcogenide (TMDC) nanosheets in the field of optoelectronic devices. Various approaches have been used to improve the performance of TMDC nanosheets. Preparation of one-dimensional TMDC nanoscrolls in combination with [...] Read more.
The low light absorption efficiency has seriously hindered the application of two-dimensional transition metal dichalcogenide (TMDC) nanosheets in the field of optoelectronic devices. Various approaches have been used to improve the performance of TMDC nanosheets. Preparation of one-dimensional TMDC nanoscrolls in combination with photoactive materials has been a promising method to improve their properties recently. In this work, we report a facile method to enhance the optoelectronic performance of TMDC nanoscrolls by wrapping the photoactive organic dye rhodamine (R6G) into them. After R6G molecules were deposited on monolayer TMDC nanosheets by the solution method, the R6G/MoS2 nanoscrolls with lengths up to hundreds of microns were prepared in a short time by dropping a mixture of ammonia and ethanol solution on the R6G/MoS2 nanosheets. The as-obtained R6G/MoS2 nanoscrolls were well characterized by optical microscopy, atomic force microscopy, Raman spectroscopy, and transmission electron microscopy to prove the encapsulation of R6G. There are multiple type II heterojunction interfaces in the R6G/MoS2 nanoscrolls, which can promote the generation of photo-induced carriers and the following electron–hole separation. The separated electrons were transported rapidly along the axial direction of the R6G/MoS2 nanoscrolls, which greatly improves the efficiency of light absorption and photoresponse. Under the irradiation of an incident 405 nm laser, the photoresponsivity, carrier mobility, external quantum efficiency, and detectivity of R6G/MoS2 nanoscrolls were enhanced to 66.07 A/W, 132.93 cm2V−1s−1, 20,261%, and 1.25 × 1012 cm·Hz1/2W−1, which are four orders of magnitude higher than those of monolayer MoS2 nanosheets. Our work indicates that the R6G/TMDC hybrid nanoscrolls could be promising materials for high-performance optoelectronic devices. Full article
(This article belongs to the Special Issue 2D Nanosheets and Their Nanohybrids)
Show Figures

Figure 1

11 pages, 2827 KiB  
Article
Wavelength-Tunable Narrow-Linewidth Laser Diode Based on Self-Injection Locking with a High-Q Lithium Niobate Microring Resonator
by Ting Huang, Yu Ma, Zhiwei Fang, Junxia Zhou, Yuan Zhou, Zhe Wang, Jian Liu, Zhenhua Wang, Haisu Zhang, Min Wang, Jian Xu and Ya Cheng
Nanomaterials 2023, 13(5), 948; https://doi.org/10.3390/nano13050948 - 6 Mar 2023
Cited by 14 | Viewed by 5119
Abstract
We demonstrate a narrow linewidth 980 nm laser by self-injection locking of an electrically pumped distributed-feedback (DFB) laser diode to a high quality (Q) factor (>105) lithium niobate (LN) microring resonator. The lithium niobate microring resonator is fabricated by photolithography-assisted chemo-mechanical [...] Read more.
We demonstrate a narrow linewidth 980 nm laser by self-injection locking of an electrically pumped distributed-feedback (DFB) laser diode to a high quality (Q) factor (>105) lithium niobate (LN) microring resonator. The lithium niobate microring resonator is fabricated by photolithography-assisted chemo-mechanical etching (PLACE) technique, and the Q factor of lithium niobate microring is measured as high as 6.91 × 105. The linewidth of the multimode 980 nm laser diode, which is ~2 nm measured from its output end, is narrowed down to 35 pm with a single-mode characteristic after coupling with the high-Q LN microring resonator. The output power of the narrow-linewidth microlaser is about 4.27 mW, and the wavelength tuning range reaches 2.57 nm. This work explores a hybrid integrated narrow linewidth 980 nm laser that has potential applications in high-efficient pump laser, optical tweezers, quantum information, as well as chip-based precision spectroscopy and metrology. Full article
(This article belongs to the Special Issue Nanophotonics Enabled by Femtosecond Lasers)
Show Figures

Figure 1

14 pages, 5094 KiB  
Article
Design of Monolithic 2D Optical Phased Arrays Heterogeneously Integrated with On-Chip Laser Arrays Based on SOI Photonic Platform
by Jian Yue, Anqi Cui, Fei Wang, Lei Han, Jinguo Dai, Xiangyi Sun, Hang Lin, Chunxue Wang, Changming Chen and Daming Zhang
Micromachines 2022, 13(12), 2117; https://doi.org/10.3390/mi13122117 - 30 Nov 2022
Cited by 2 | Viewed by 2747
Abstract
In this work, heterogeneous integration of both two-dimensional (2D) optical phased arrays (OPAs) and on-chip laser arrays based on a silicon photonic platform is proposed. The tunable multi-quantum-well (MQW) laser arrays, active switching/shifting arrays, and grating antenna arrays are used in the OPA [...] Read more.
In this work, heterogeneous integration of both two-dimensional (2D) optical phased arrays (OPAs) and on-chip laser arrays based on a silicon photonic platform is proposed. The tunable multi-quantum-well (MQW) laser arrays, active switching/shifting arrays, and grating antenna arrays are used in the OPA module to realize 2D spatial beam scanning. The 2D OPA chip is composed of four main parts: (1) tunable MQW laser array emitting light signals in the range of 1480–1600 nm wavelengths; (2) electro-optic (EO) switch array for selecting the desired signal light from the on-chip laser array; (3) EO phase-shifter array for holding a fixed phase difference for the uniform amplitude of specific optical signal; and (4) Bragg waveguide grating antenna array for controlling beamforming. By optimizing the overall performances of the 2D OPA chip, a large steering range of 88.4° × 18° is realized by tuning both the phase and the wavelength for each antenna. In contrast to the traditional thermo-optic LIDAR chip with an external light source, the overall footprint of the 2D OPA chip can be limited to 8 mm × 3 mm, and the modulation rate can be 2.5 ps. The ultra-compact 2D OPA assembling with on-chip tunable laser arrays using hybrid integration could result in the application of a high-density, high-speed, and high-precision lidar system in the future. Full article
(This article belongs to the Special Issue Optics and Photonics in Micromachines)
Show Figures

Figure 1

24 pages, 10155 KiB  
Article
Co-Package Technology Platform for Low-Power and Low-Cost Data Centers
by Konstantinos Papatryfonos, David R. Selviah, Avi Maman, Kobi Hasharoni, Antoine Brimont, Andrea Zanzi, Jochen Kraft, Victor Sidorov, Marc Seifried, Yannick Baumgartner, Folkert Horst, Bert Jan Offrein, Katarzyna Lawniczuk, Ronald G. Broeke, Nikos Terzenidis, George Mourgias-Alexandris, Mingchu Tang, Alwyn J. Seeds, Huiyun Liu, Pablo Sanchis, Miltiadis Moralis-Pegios, Thanasis Manolis, Nikos Pleros, Konstantinos Vyrsokinos, Bogdan Sirbu, Yann Eichhammer, Hermann Oppermann and Tolga Tekinadd Show full author list remove Hide full author list
Appl. Sci. 2021, 11(13), 6098; https://doi.org/10.3390/app11136098 - 30 Jun 2021
Cited by 15 | Viewed by 8254
Abstract
We report recent advances in photonic–electronic integration developed in the European research project L3MATRIX. The aim of the project was to demonstrate the basic building blocks of a co-packaged optical system. Two-dimensional silicon photonics arrays with 64 modulators were fabricated. Novel modulation schemes [...] Read more.
We report recent advances in photonic–electronic integration developed in the European research project L3MATRIX. The aim of the project was to demonstrate the basic building blocks of a co-packaged optical system. Two-dimensional silicon photonics arrays with 64 modulators were fabricated. Novel modulation schemes based on slow light modulation were developed to assist in achieving an efficient performance of the module. Integration of DFB laser sources within each cell in the matrix was demonstrated as well using wafer bonding between the InP and SOI wafers. Improved semiconductor quantum dot MBE growth, characterization and gain stack designs were developed. Packaging of these 2D photonic arrays in a chiplet configuration was demonstrated using a vertical integration approach in which the optical interconnect matrix was flip-chip assembled on top of a CMOS mimic chip with 2D vertical fiber coupling. The optical chiplet was further assembled on a substrate to facilitate integration with the multi-chip module of the co-packaged system with a switch surrounded by several such optical chiplets. We summarize the features of the L3MATRIX co-package technology platform and its holistic toolbox of technologies to address the next generation of computing challenges. Full article
(This article belongs to the Special Issue Frontiers in Optical Interconnects)
Show Figures

Figure 1

10 pages, 5848 KiB  
Article
Theoretical Study on Symmetry-Broken Plasmonic Optical Tweezers for Heterogeneous Noble-Metal-Based Nano-Bowtie Antennas
by Guangqing Du, Yu Lu, Dayantha Lankanath, Xun Hou and Feng Chen
Nanomaterials 2021, 11(3), 759; https://doi.org/10.3390/nano11030759 - 17 Mar 2021
Cited by 7 | Viewed by 3338
Abstract
Plasmonic optical tweezers with a symmetry-tunable potential well were investigated based on a heterogeneous model of nano-bowtie antennas made of different noble substances. The typical noble metals Au and Ag are considered as plasmonic supporters for excitation of hybrid plasmonic modes in bowtie [...] Read more.
Plasmonic optical tweezers with a symmetry-tunable potential well were investigated based on a heterogeneous model of nano-bowtie antennas made of different noble substances. The typical noble metals Au and Ag are considered as plasmonic supporters for excitation of hybrid plasmonic modes in bowtie dimers. It is proposed that the plasmonic optical trapping force around a quantum dot exhibits symmetry-broken characteristics and becomes increasingly asymmetrical with increasing applied laser electric field. Here, it is explained by the dominant plasmon hybridization of the heterogeneous Au–Ag dimer, in which the plasmon excitations can be inconsistently modified by tuning the applied laser electric field. In the spectrum regime, the wavelength-dependent plasmonic trapping potential exhibits a two-peak structure for the heterogeneous Au–Ag bowtie dimer compared to a single-peak trapping potential of the Au–Au bowtie dimer. In addition, we comprehensively investigated the influence of structural parameter variables on the plasmonic potential well generated from the heterogeneous noble nano-bowtie antenna with respect to the bowtie edge length, edge/tip rounding, bowtie gap, and nanosphere size. This work could be helpful in improving our understanding of wavelength and laser field tunable asymmetric nano-tweezers for flexible and non-uniform nano-trapping applications of particle-sorting, plasmon coloring, SERS imaging, and quantum dot lighting. Full article
(This article belongs to the Special Issue Functional Plasmonic Nanostructures)
Show Figures

Figure 1

21 pages, 42290 KiB  
Review
Development of an Epitaxial Growth Technique Using III-V on a Si Platform for Heterogeneous Integration of Membrane Photonic Devices on Si
by Takuro Fujii, Tatsurou Hiraki, Takuma Aihara, Hidetaka Nishi, Koji Takeda, Tomonari Sato, Takaaki Kakitsuka, Tai Tsuchizawa and Shinji Matsuo
Appl. Sci. 2021, 11(4), 1801; https://doi.org/10.3390/app11041801 - 18 Feb 2021
Cited by 17 | Viewed by 9047
Abstract
The rapid increase in total transmission capacity within and between data centers requires the construction of low-cost, high-capacity optical transmitters. Since a tremendous number of transmitters are required, photonic integrated circuits (PICs) using Si photonics technology enabling the integration of various functional devices [...] Read more.
The rapid increase in total transmission capacity within and between data centers requires the construction of low-cost, high-capacity optical transmitters. Since a tremendous number of transmitters are required, photonic integrated circuits (PICs) using Si photonics technology enabling the integration of various functional devices on a single chip is a promising solution. A limitation of a Si-based PIC is the lack of an efficient light source due to the indirect bandgap of Si; therefore, hybrid integration technology of III-V semiconductor lasers on Si is desirable. The major challenges are that heterogeneous integration of III-V materials on Si induces the formation of dislocation at high process temperature; thus, the epitaxial regrowth process is difficult to apply. This paper reviews the evaluations conducted on our epitaxial growth technique using a directly bonded III-V membrane layer on a Si substrate. This technique enables epitaxial growth without the fundamental difficulties associated with lattice mismatch or anti-phase boundaries. In addition, crystal degradation correlating with the difference in thermal expansion is eliminated by keeping the total III-V layer thickness thinner than ~350 nm. As a result, various III-V photonic-device-fabrication technologies, such as buried regrowth, butt-joint regrowth, and selective area growth, can be applicable on the Si-photonics platform. We demonstrated the growth of indium-gallium-aluminum arsenide (InGaAlAs) multi-quantum wells (MQWs) and fabrication of lasers that exhibit >25 Gbit/s direct modulation with low energy cost. In addition, selective-area growth that enables the full O-band bandgap control of the MQW layer over the 150-nm range was demonstrated. We also fabricated indium-gallium-arsenide phosphide (InGaAsP) based phase modulators integrated with a distributed feedback laser. Therefore, the directly bonded III-V-on-Si substrate platform paves the way to manufacturing hybrid PICs for future data-center networks. Full article
Show Figures

Figure 1

13 pages, 2796 KiB  
Article
Intersubband Transition Engineering in the Conduction Band of Asymmetric Coupled Ge/SiGe Quantum Wells
by Luca Persichetti, Michele Montanari, Chiara Ciano, Luciana Di Gaspare, Michele Ortolani, Leonetta Baldassarre, Marvin Zoellner, Samik Mukherjee, Oussama Moutanabbir, Giovanni Capellini, Michele Virgilio and Monica De Seta
Crystals 2020, 10(3), 179; https://doi.org/10.3390/cryst10030179 - 6 Mar 2020
Cited by 15 | Viewed by 4131
Abstract
n-type Ge/SiGe asymmetric coupled quantum wells represent the building block of a variety of nanoscale quantum devices, including recently proposed designs for a silicon-based THz quantum cascade laser. In this paper, we combine structural and spectroscopic experiments on 20-module superstructures, each featuring [...] Read more.
n-type Ge/SiGe asymmetric coupled quantum wells represent the building block of a variety of nanoscale quantum devices, including recently proposed designs for a silicon-based THz quantum cascade laser. In this paper, we combine structural and spectroscopic experiments on 20-module superstructures, each featuring two Ge wells coupled through a Ge-rich SiGe tunnel barrier, as a function of the geometry parameters of the design and the P dopant concentration. Through a comparison of THz spectroscopic data with numerical calculations of intersubband optical absorption resonances, we demonstrated that it is possible to tune, by design, the energy and the spatial overlap of quantum confined subbands in the conduction band of the heterostructures. The high structural/interface quality of the samples and the control achieved on subband hybridization are promising starting points towards a working electrically pumped light-emitting device. Full article
(This article belongs to the Special Issue Semiconductor Heteroepitaxy)
Show Figures

Figure 1

14 pages, 6356 KiB  
Article
A Quantum Cascade Laser-Based Optical Sensor for Continuous Monitoring of Environmental Methane in Dunkirk (France)
by Rabih Maamary, Xiaojuan Cui, Eric Fertein, Patrick Augustin, Marc Fourmentin, Dorothée Dewaele, Fabrice Cazier, Laurence Guinet and Weidong Chen
Sensors 2016, 16(2), 224; https://doi.org/10.3390/s16020224 - 8 Feb 2016
Cited by 19 | Viewed by 7262
Abstract
A room-temperature continuous-wave (CW) quantum cascade laser (QCL)-based methane (CH4) sensor operating in the mid-infrared near 8 μm was developed for continuous measurement of CH4 concentrations in ambient air. The well-isolated absorption line (7F2,4 ← 8F1,2) of [...] Read more.
A room-temperature continuous-wave (CW) quantum cascade laser (QCL)-based methane (CH4) sensor operating in the mid-infrared near 8 μm was developed for continuous measurement of CH4 concentrations in ambient air. The well-isolated absorption line (7F2,4 ← 8F1,2) of the ν4 fundamental band of CH4 located at 1255.0004 cm−1 was used for optical measurement of CH4 concentration by direct absorption in a White-type multipass cell with an effective path-length of 175 m. A 1σ (SNR = 1) detection limit of 33.3 ppb in 218 s was achieved with a measurement precision of 1.13%. The developed sensor was deployed in a campaign of measurements of time series CH4 concentration on a site near a suburban traffic road in Dunkirk (France) from 9th to 22nd January 2013. An episode of high CH4 concentration of up to ~3 ppm has been observed and analyzed with the help of meteorological parameters combined with back trajectory calculation using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model of NOAA. Full article
(This article belongs to the Special Issue Infrared and THz Sensing and Imaging)
Show Figures

Graphical abstract

Back to TopTop