Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = quantum literacy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1461 KiB  
Article
Quantum Computing in Data Science and STEM Education: Mapping Academic Trends and Analyzing Practical Tools
by Eloy López-Meneses, Jesús Cáceres-Tello, José Javier Galán-Hernández and Luis López-Catalán
Computers 2025, 14(6), 235; https://doi.org/10.3390/computers14060235 - 16 Jun 2025
Viewed by 665
Abstract
Quantum computing is emerging as a key enabler of digital transformation in data science and STEM education. This study investigates how quantum computing can be meaningfully integrated into higher education by combining a dual approach: a structured assessment of the specialized literature and [...] Read more.
Quantum computing is emerging as a key enabler of digital transformation in data science and STEM education. This study investigates how quantum computing can be meaningfully integrated into higher education by combining a dual approach: a structured assessment of the specialized literature and a practical evaluation of educational tools. First, a science mapping study based on 281 peer-reviewed publications indexed in Scopus (2015–2024) identifies growth trends, thematic clusters, and international collaboration networks at the intersection of quantum computing, data science, and education. Second, a comparative analysis of widely used educational platforms—such as Qiskit, Quantum Inspire, QuTiP, and Amazon Braket—is conducted using pedagogical criteria including accessibility, usability, and curriculum integration. The results highlight a growing convergence between quantum technologies, artificial intelligence, and data-driven learning. A strategic framework and roadmap are proposed to support the gradual and scalable adoption of quantum literacy in university-level STEM programs. Full article
Show Figures

Graphical abstract

13 pages, 1600 KiB  
Protocol
Establishing a Gold Standard for Quantitative Menstrual Cycle Monitoring
by Thomas Bouchard, Paul Yong and Patricia Doyle-Baker
Medicina 2023, 59(9), 1513; https://doi.org/10.3390/medicina59091513 - 23 Aug 2023
Cited by 11 | Viewed by 8117
Abstract
Background and Objectives: The Quantum Menstrual Health Monitoring Study will measure four key reproductive hormones in the urine (follicle-stimulating hormone, FSH; estrone-3-glucuronide, E13G; luteinizing hormone, LH; and pregnanediol glucuronide, PDG) to characterize patterns that predict and confirm ovulation, referenced to [...] Read more.
Background and Objectives: The Quantum Menstrual Health Monitoring Study will measure four key reproductive hormones in the urine (follicle-stimulating hormone, FSH; estrone-3-glucuronide, E13G; luteinizing hormone, LH; and pregnanediol glucuronide, PDG) to characterize patterns that predict and confirm ovulation, referenced to serum hormones and the gold standard of the ultrasound day of ovulation in participants with regular cycles. These normal cycles will provide a reference for comparison to irregular cycles in subjects with polycystic ovarian syndrome (PCOS) and athletes. Materials and Methods: Participants will track their menstrual cycles for 3 months and be provided with an at-home urine hormone monitor (Mira monitor) to predict ovulation. The day of ovulation will be confirmed with serial ultrasounds completed in a community clinic. Urine results will be compared to serum hormone values. Other markers of menstrual health, such as bleeding patterns and temperature changes, will be determined using a customized app. Three groups will be recruited. Group 1 will include those with consistent regular cycle lengths (between 24–38 days), and will be compared to two groups with irregular cycle lengths (with increased cycle length variability and longer cycles). Group 2 will include those with polycystic ovarian syndrome (PCOS) with irregular cycles and Group 3 will include individuals participating in high levels of exercise with irregular cycles. Hypothesis: The Mira monitor quantitative urine hormone pattern will accurately correlate with serum hormonal levels and will predict (with LH) and confirm (with PDG) the ultrasound day of ovulation in those with regular cycles as well as those with irregular cycles. Rationale: Once the ultrasound validation is complete, tools like the Mira monitor with a customized app may become a new standard for at-home and remote clinical monitoring of the menstrual cycle without having to use labor-intensive follicular-tracking ultrasound or follow serum hormone changes. Conclusions: Precision monitoring of the menstrual cycle is expected to impact individuals who want to increase their menstrual health literacy and guide decisions about fertility. Full article
(This article belongs to the Special Issue Quantitative Hormone Monitoring of the Menstrual Cycle)
Show Figures

Figure 1

28 pages, 6231 KiB  
Article
Key Experiment and Quantum Reasoning
by Moritz Waitzmann, Kim-Alessandro Weber, Susanne Wessnigk and Ruediger Scholz
Physics 2022, 4(4), 1202-1229; https://doi.org/10.3390/physics4040078 - 8 Oct 2022
Cited by 5 | Viewed by 3116
Abstract
For around five decades, physicists have been experimenting with single quanta such as single photons. Insofar as the practised ensemble reasoning has become obsolete for the interpretation of these experiments, the non-classical intrinsic probabilistic nature of quantum theory has gained increased importance. One [...] Read more.
For around five decades, physicists have been experimenting with single quanta such as single photons. Insofar as the practised ensemble reasoning has become obsolete for the interpretation of these experiments, the non-classical intrinsic probabilistic nature of quantum theory has gained increased importance. One of the most important exclusive features of quantum physics is the undeniable existence of the superposition of states, even for single quantum objects. One known example of this effect is entanglement. In this paper, two classically contradictory phenomena are combined to one single experiment. This experiment incontestably shows that a single photon incident on an optical beam splitter can either be reflected or transmitted. The almost complete absence of coincident clicks of two photodetectors demonstrates that these two output states are incompatible. However, when combining these states using two mirrors, we can observe interference patterns in the counting rate of the single photon detector. The only explanation for this is that the two incompatible output states are prepared and kept simultaneously—a typical consequence of a quantum superposition of states. (Semi-)classical physical concepts fail here, and a full quantum concept is predestined to explain the complementary experimental outcomes for the quantum optical “non-waves” called single photons. In this paper, we intend to demonstrate that a true quantum physical key experiment (“true” in the sense that it cannot be explained by any classical physical concept), when combined with full quantum reasoning (probability, superposition and interference), influences students’ readiness to use quantum elements for interpretation. Full article
(This article belongs to the Special Issue Teaching and Learning Quantum Theory and Particle Physics)
Show Figures

Figure 1

12 pages, 276 KiB  
Article
The Quasi-History of Early Quantum Theory
by Oliver Passon
Physics 2022, 4(3), 880-891; https://doi.org/10.3390/physics4030057 - 3 Aug 2022
Cited by 4 | Viewed by 4028
Abstract
While physics has a rather ahistoric teaching tradition, it is common to include at least anecdotal reference to historical events and actors. These brief remarks on the history are typically distorted. I take issue with the textbook narrative of the historical development of [...] Read more.
While physics has a rather ahistoric teaching tradition, it is common to include at least anecdotal reference to historical events and actors. These brief remarks on the history are typically distorted. I take issue with the textbook narrative of the historical development of early quantum theory and rectify some of the more severe misrepresentations. This seems to be all the more important, since the history of physics is commonly (and rightly) regarded as a means to foster scientific literacy and a more appropriate understanding of the nature of science (NoS). Full article
(This article belongs to the Special Issue Teaching and Learning Quantum Theory and Particle Physics)
16 pages, 615 KiB  
Article
Advancing Multidisciplinary STEM Education with Mathematics for Future-Ready Quantum Algorithmic Literacy
by Meng-Leong How
Mathematics 2022, 10(7), 1146; https://doi.org/10.3390/math10071146 - 2 Apr 2022
Cited by 7 | Viewed by 2738
Abstract
The perception that mathematics is difficult has always persisted. Nevertheless, mathematics is such an essential component of STEM education. Quantum technologies are already having enormous effects on our society, with advantages seen across a broad variety of industries, including finance, aerospace, and energy. [...] Read more.
The perception that mathematics is difficult has always persisted. Nevertheless, mathematics is such an essential component of STEM education. Quantum technologies are already having enormous effects on our society, with advantages seen across a broad variety of industries, including finance, aerospace, and energy. These innovations promise to transform our lives. Managers in the business and public sectors will need to learn quantum computing. Quantum algorithmic literacy may help increase mathematical understanding and enthusiasm. The current paper proposes that one possible approach is to present the information in a reasonably gentle but intelligible way, in order to excite individuals with the mathematics that they already know by extending them to acquiring quantum algorithmic literacy. A gentle introduction to the mathematics required to model quantum computing ideas, including linear transformations and matrix algebra, will be given. Quantum entanglement, linear transformations, quantum cryptography, and quantum teleportation will be used as examples to illustrate the usefulness of basic mathematical concepts in formulating quantum algorithms. These exemplars in quantum algorithmic literacy can help to invigorate people’s interest in mathematics. Additionally, a qualitative comparative analysis (QCA) framework is provided that teachers can utilize to determine which students to approach for remediation. This assists the teachers in dispelling any pupils’ uncertainty about mathematical concepts. Full article
(This article belongs to the Special Issue Challenges in STEM Education)
Show Figures

Figure 1

10 pages, 3305 KiB  
Article
Quantum Physics Literacy Aimed at K12 and the General Public
by Caterina Foti, Daria Anttila, Sabrina Maniscalco and Maria Luisa Chiofalo
Universe 2021, 7(4), 86; https://doi.org/10.3390/universe7040086 - 1 Apr 2021
Cited by 27 | Viewed by 4488
Abstract
Educating K12 students and general public in quantum physics represents an evitable must no longer since quantum technologies are going to revolutionize our lives. Quantum literacy is a formidable challenge and an extraordinary opportunity for a massive cultural uplift, where citizens learn how [...] Read more.
Educating K12 students and general public in quantum physics represents an evitable must no longer since quantum technologies are going to revolutionize our lives. Quantum literacy is a formidable challenge and an extraordinary opportunity for a massive cultural uplift, where citizens learn how to engender creativity and practice a new way of thinking, essential for smart community building. Scientific thinking hinges on analyzing facts and creating understanding, and it is then formulated with the dense mathematical language for later fact checking. Within classical physics, learners’ intuition may in principle be educated via classroom demonstrations of everyday-life phenomena. Their understanding can even be framed with the mathematics suited to their instruction degree. For quantum physics, on the contrary, we have no experience of quantum phenomena and the required mathematics is beyond non-expert reach. Therefore, educating intuition needs imagination. Without rooting to experiments and some degree of formal framing, educators face the risk to provide only evanescent tales, often misled, while resorting to familiar analogies. Here, we report on the realization of QPlayLearn, an online platform conceived to explicitly address challenges and opportunities of massive quantum literacy. QPlayLearn’s mission is to provide multilevel education on quantum science and technologies to anyone, regardless of age and background. To this aim, innovative interactive tools enhance the learning process effectiveness, fun, and accessibility, while remaining grounded on scientific correctness. Examples are games for basic quantum physics teaching, on-purpose designed animations, and easy-to-understand explanations on terminology and concepts by global experts. As a strategy for massive cultural change, QPlayLearn offers diversified content for different target groups, from primary school all the way to university physics students. It is addressed also to companies wishing to understand the potential of the emergent quantum industry, journalists, and policymakers needing to seize what quantum technologies are about, as well as all quantum science enthusiasts. Full article
Show Figures

Figure 1

1 pages, 167 KiB  
Abstract
Quantum Physics Literacy Aimed at K12 and General Public
by Caterina Foti, Daria Anttila, Sabrina Maniscalco and Marilù Chiofalo
Phys. Sci. Forum 2021, 2(1), 36; https://doi.org/10.3390/ECU2021-09322 - 22 Feb 2021
Cited by 1 | Viewed by 1529
Abstract
Teaching quantum physics to K12 students and the general public represents an inevitable must, while quantum technologies revolutionize our lives. Quantum literacy is a formidable challenge and an extraordinary opportunity for a massive cultural uplift, where citizens learn how to engender creativity and [...] Read more.
Teaching quantum physics to K12 students and the general public represents an inevitable must, while quantum technologies revolutionize our lives. Quantum literacy is a formidable challenge and an extraordinary opportunity for a massive cultural uplift, where citizens learn how to engender creativity and practice a new way of thinking, essential for smart community building. Scientific thinking hinges on analyzing facts and creating understanding, then formulating these with dense mathematical language for later fact checking. Within classical physics, learners’ intuition can be educated via classroom demonstrations of everyday life phenomena. Their understanding can even be framed with the mathematics suited to their instruction degree. For quantum physics instead, we have no experience of quantum phenomena, and the required mathematics is beyond non-expert reach. Therefore, educating intuition needs imagination. Without resorting to experiments and some degree of formal framing, educators face the risk of providing only evanescent tales, often misled, while resorting to familiar analogies. Here, we report on the realization of QPlayLearn, an online platform conceived to explicitly address challenges and opportunities of massive quantum literacy. QPlayLearn’s mission is to provide multilevel education on quantum science and technologies to anyone, regardless of age and background. To this aim, innovative interactive tools enhance the learning process effectiveness, fun, and accessibility, while remaining grounded in scientific correctness. Examples are games for basic quantum physics teaching, on-purpose designed animations, and easy-to-understand explanations on terminology and concepts by global experts. As a strategy for massive cultural change, QPlayLearn offers diversified content for different target groups, from primary school all the way to university physics students. It is also addressed to companies wishing to understand the potential of the emergent quantum industry, journalists, and policy makers who need to quickly to understand what quantum technologies are about, and all quantum science enthusiasts. Full article
(This article belongs to the Proceedings of The 1st Electronic Conference on Universe)
Back to TopTop