Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = quantum Bose liquid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 297 KiB  
Article
Transition from Inflation to Dark Energy in Superfluid Vacuum Theory
by Konstantin G. Zloshchastiev
Quantum Rep. 2025, 7(1), 7; https://doi.org/10.3390/quantum7010007 - 8 Feb 2025
Cited by 1 | Viewed by 1689
Abstract
The laminar constant-velocity superflow of a physical vacuum modelled by logarithmic quantum Bose liquid is considered. We demonstrate that this three-dimensional non-relativistic quantum flow generates a four-dimensional relativistic quinton system, which comprises the dilaton and quintom (a combination of the quintessence and tachyonic [...] Read more.
The laminar constant-velocity superflow of a physical vacuum modelled by logarithmic quantum Bose liquid is considered. We demonstrate that this three-dimensional non-relativistic quantum flow generates a four-dimensional relativistic quinton system, which comprises the dilaton and quintom (a combination of the quintessence and tachyonic phantom fields); all three fields are thus shown to be projections of the dynamical evolution of superfluid vacuum density and its fluctuations onto the measuring apparatus of a relativistic observer. The unified model describes the transition from the inflationary period in the early universe to the contemporary accelerating expansion of the universe, commonly referred to as the “dark energy” period. The quintessence and tachyonic scalar components of the derived model turn out to be non-minimally coupled, which is a hitherto unexplored generalization of cosmological phantom models. Full article
(This article belongs to the Special Issue Exclusive Feature Papers of Quantum Reports in 2024–2025)
12 pages, 300 KiB  
Article
Derivation of Emergent Spacetime Metric, Gravitational Potential and Speed of Light in Superfluid Vacuum Theory
by Konstantin G. Zloshchastiev
Universe 2023, 9(5), 234; https://doi.org/10.3390/universe9050234 - 17 May 2023
Cited by 2 | Viewed by 2148
Abstract
Within the frameworks of the logarithmic superfluid model of physical vacuum, we demonstrate the emergence of four-dimensional curved spacetime from the dynamics of quantum Bose liquid in three-dimensional Euclidean space. We derive the metric tensor of this spacetime and study its special cases [...] Read more.
Within the frameworks of the logarithmic superfluid model of physical vacuum, we demonstrate the emergence of four-dimensional curved spacetime from the dynamics of quantum Bose liquid in three-dimensional Euclidean space. We derive the metric tensor of this spacetime and study its special cases and limits, such as the linear-phase flow and linearized gravity limit. We show that the value of speed of light, which is a fundamental parameter in a theory of relativity, is a derived notion in superfluid vacuum theory: its value is a combination of the Planck constant and original parameters of the background superfluid. As for the gravitational potential, then it can be defined in terms of the quantum information entropy of the background superfluid. Thus, relativistic gravity and curved spacetime are shown to result from the dynamics of quantum excitations of the background superfluid being projected onto the measurement apparatus of a relativistic observer. Full article
(This article belongs to the Section Gravitation)
39 pages, 1055 KiB  
Article
Simulation of Nuclear Quantum Effects in Condensed Matter Systems via Quantum Baths
by Simon Huppert, Thomas Plé, Sara Bonella, Philippe Depondt and Fabio Finocchi
Appl. Sci. 2022, 12(9), 4756; https://doi.org/10.3390/app12094756 - 9 May 2022
Cited by 13 | Viewed by 3178
Abstract
This paper reviews methods that aim at simulating nuclear quantum effects (NQEs) using generalized thermal baths. Generalized (or quantum) baths simulate statistical quantum features, and in particular zero-point energy effects, through non-Markovian stochastic dynamics. They make use of generalized Langevin Equations (GLEs), in [...] Read more.
This paper reviews methods that aim at simulating nuclear quantum effects (NQEs) using generalized thermal baths. Generalized (or quantum) baths simulate statistical quantum features, and in particular zero-point energy effects, through non-Markovian stochastic dynamics. They make use of generalized Langevin Equations (GLEs), in which the quantum Bose–Einstein energy distribution is enforced by tuning the random and friction forces, while the system degrees of freedom remain classical. Although these baths have been formally justified only for harmonic oscillators, they perform well for several systems, while keeping the cost of the simulations comparable to the classical ones. We review the formal properties and main characteristics of classical and quantum GLEs, in relation with the fluctuation–dissipation theorems. Then, we describe the quantum thermostat and quantum thermal bath, the two generalized baths currently most used, providing several examples of applications for condensed matter systems, including the calculation of vibrational spectra. The most important drawback of these methods, zero-point energy leakage, is discussed in detail with the help of model systems, and a recently proposed scheme to monitor and mitigate or eliminate it—the adaptive quantum thermal bath—is summarised. This approach considerably extends the domain of application of generalized baths, leading, for instance, to the successful simulation of liquid water, where a subtle interplay of NQEs is at play. The paper concludes by overviewing further development opportunities and open challenges of generalized baths. Full article
(This article belongs to the Special Issue Computer Simulation of Quantum and Classical Systems)
Show Figures

Figure 1

25 pages, 421 KiB  
Article
An Alternative to Dark Matter and Dark Energy: Scale-Dependent Gravity in Superfluid Vacuum Theory
by Konstantin G. Zloshchastiev
Universe 2020, 6(10), 180; https://doi.org/10.3390/universe6100180 - 15 Oct 2020
Cited by 19 | Viewed by 3763
Abstract
We derive an effective gravitational potential, induced by the quantum wavefunction of a physical vacuum of a self-gravitating configuration, while the vacuum itself is viewed as the superfluid described by the logarithmic quantum wave equation. We determine that gravity has a multiple-scale pattern, [...] Read more.
We derive an effective gravitational potential, induced by the quantum wavefunction of a physical vacuum of a self-gravitating configuration, while the vacuum itself is viewed as the superfluid described by the logarithmic quantum wave equation. We determine that gravity has a multiple-scale pattern, to such an extent that one can distinguish sub-Newtonian, Newtonian, galactic, extragalactic and cosmological terms. The last of these dominates at the largest length scale of the model, where superfluid vacuum induces an asymptotically Friedmann–Lemaître–Robertson–Walker-type spacetime, which provides an explanation for the accelerating expansion of the Universe. The model describes different types of expansion mechanisms, which could explain the discrepancy between measurements of the Hubble constant using different methods. On a galactic scale, our model explains the non-Keplerian behaviour of galactic rotation curves, and also why their profiles can vary depending on the galaxy. It also makes a number of predictions about the behaviour of gravity at larger galactic and extragalactic scales. We demonstrate how the behaviour of rotation curves varies with distance from a gravitating center, growing from an inner galactic scale towards a metagalactic scale: A squared orbital velocity’s profile crosses over from Keplerian to flat, and then to non-flat. The asymptotic non-flat regime is thus expected to be seen in the outer regions of large spiral galaxies. Full article
24 pages, 2559 KiB  
Article
Modulational Instability, Inter-Component Asymmetry, and Formation of Quantum Droplets in One-Dimensional Binary Bose Gases
by Thudiyangal Mithun, Aleksandra Maluckov, Kenichi Kasamatsu, Boris A. Malomed and Avinash Khare
Symmetry 2020, 12(1), 174; https://doi.org/10.3390/sym12010174 - 18 Jan 2020
Cited by 69 | Viewed by 6094
Abstract
Quantum droplets are ultradilute liquid states that emerge from the competitive interplay of two Hamiltonian terms, the mean-field energy and beyond-mean-field correction, in a weakly interacting binary Bose gas. We relate the formation of droplets in symmetric and asymmetric two-component one-dimensional boson systems [...] Read more.
Quantum droplets are ultradilute liquid states that emerge from the competitive interplay of two Hamiltonian terms, the mean-field energy and beyond-mean-field correction, in a weakly interacting binary Bose gas. We relate the formation of droplets in symmetric and asymmetric two-component one-dimensional boson systems to the modulational instability of a spatially uniform state driven by the beyond-mean-field term. Asymmetry between the components may be caused by their unequal populations or unequal intra-component interaction strengths. Stability of both symmetric and asymmetric droplets is investigated. Robustness of the symmetric solutions against symmetry-breaking perturbations is confirmed. Full article
(This article belongs to the Special Issue Symmetry and Mesoscopic Physics)
Show Figures

Figure 1

Back to TopTop