Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = quantitative high-throughput screening (qHTS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1933 KiB  
Article
Profiling the Tox21 Compound Library for Their Inhibitory Effects on Cytochrome P450 Enzymes
by Srilatha Sakamuru, Jameson Travers, Carleen Klumpp-Thomas, Ruili Huang, Kristine L. Witt, Stephen S. Ferguson, Steven O. Simmons, David M. Reif, Anton Simeonov and Menghang Xia
Int. J. Mol. Sci. 2025, 26(11), 4976; https://doi.org/10.3390/ijms26114976 - 22 May 2025
Viewed by 896
Abstract
Cytochrome P450 (CYP) enzymes are membrane-bound hemoproteins crucial for drug and xenobiotic metabolism. While more than 50 CYPs have been identified in humans, the isoforms from CYP1, 2, and 3 families contribute to the metabolism of about 80% of clinically approved drugs. To [...] Read more.
Cytochrome P450 (CYP) enzymes are membrane-bound hemoproteins crucial for drug and xenobiotic metabolism. While more than 50 CYPs have been identified in humans, the isoforms from CYP1, 2, and 3 families contribute to the metabolism of about 80% of clinically approved drugs. To evaluate the effects of environmental chemicals on the activities of these important CYP enzyme families, we screened the Tox21 10K compound library to identify chemicals that inhibit CYP1A2, 2C9, 2C19, 2D6, and 3A4 enzymes. The data obtained from these five screenings were analyzed to reveal the structural classes responsible for inhibiting multiple and/or selective CYPs. Some known structural compound classes exhibiting pan-CYP inhibition, such as azole fungicides, along with established clinical inhibitors of CYPs, including erythromycin and verapamil inhibiting CYP3A4 and paroxetine and terbinafine inhibiting CYP2D6, were all confirmed in the current study. In addition, some selective CYP inhibitors, previously unknown but with potent activity (IC50 values < 1 µM), were identified. Examples included yohimbine, an indole alkaloid, and loteprednol, a corticosteroid, which showed inhibitory activity in CYP2D6 and 3A4 assays, respectively. These findings suggest that assessment of a candidate compound’s impact on CYP function may allow pre-emptive mitigation of potential adverse reactions and toxicity during drug development or toxicological characterization of environmental chemicals. Full article
(This article belongs to the Special Issue Cytochrome P450 Mechanism and Reactivity)
Show Figures

Figure 1

19 pages, 1980 KiB  
Article
Antimicrobial Resistance in the Terrestrial Environment of Agricultural Landscapes in Norway
by Live L. Nesse, Kristin Forfang, Jannice Schau Slettemeås, Snorre Hagen, Marianne Sunde, Abdelhameed Elameen, Gro Johannessen, Marianne Stenrød, Girum Tadesse Tessema, Marit Almvik and Hans Geir Eiken
Microorganisms 2024, 12(9), 1854; https://doi.org/10.3390/microorganisms12091854 - 6 Sep 2024
Cited by 1 | Viewed by 1665
Abstract
The abundance and diversity of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) in agricultural landscapes may be important for the spread of antimicrobial resistance (AMR) in the environment. The aim of this study was to apply screening methods for ARB and ARGs [...] Read more.
The abundance and diversity of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) in agricultural landscapes may be important for the spread of antimicrobial resistance (AMR) in the environment. The aim of this study was to apply screening methods for ARB and ARGs to investigate the impact of farming on the prevalence of AMR in a country with low antibiotic usage. We have analyzed samples (n = 644) from soil and wild terrestrial animals and plants (slugs, snails, mice, shrews, earthworms, and red clover) collected over two years in agricultural fields accompanied by nearby control areas with low human activity. All samples were investigated for the occurrence of 35 different ARGs using high-throughput quantitative PCR (HT-qPCR) on a newly developed DNA array. In addition, samples from the first year (n = 415) were investigated with a culture-based approach combined with whole-genome sequencing (WGS) to identify antimicrobial-resistant E. coli (AREC). ARGs were detected in 59.5% of all samples (2019 + 2020). AREC, which was only investigated in the 2019 samples, was identified in 1.9% of these. Samples collected in the autumn showed more ARGs and AREC than spring samples, and this was more pronounced for organic fields than for conventional fields. Control areas with low human activity showed lower levels of ARGs and a lack of AREC. The use of livestock manure was correlated with a higher level of ARG load than other farming practices. None of the soil samples contained antibiotics, and no association was found between AMR and the levels of metals or pesticides. High qualitative similarity between HT-qPCR and WGS, together with the positive controls to the validation of our 35 ARG assays, show that the microfluid DNA array may be an efficient screening tool on environmental samples. In conclusion, even in a country with a very low consumption of antimicrobials by production animals, our results support the hypothesis of these animals being a source of AREC and ARGs in agricultural environments, primarily through the use of manure. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Wildlife)
Show Figures

Figure 1

26 pages, 4728 KiB  
Article
High-Throughput Chemical Screening and Structure-Based Models to Predict hERG Inhibition
by Shagun Krishna, Alexandre Borrel, Ruili Huang, Jinghua Zhao, Menghang Xia and Nicole Kleinstreuer
Biology 2022, 11(2), 209; https://doi.org/10.3390/biology11020209 - 28 Jan 2022
Cited by 17 | Viewed by 8589
Abstract
Chemical inhibition of the human ether-a -go-go-related gene (hERG) potassium channel leads to a prolonged QT interval that can contribute to severe cardiotoxicity. The adverse effects of hERG inhibition are one of the principal causes of drug attrition in clinical and pre-clinical development. [...] Read more.
Chemical inhibition of the human ether-a -go-go-related gene (hERG) potassium channel leads to a prolonged QT interval that can contribute to severe cardiotoxicity. The adverse effects of hERG inhibition are one of the principal causes of drug attrition in clinical and pre-clinical development. Preliminary studies have demonstrated that a wide range of environmental chemicals and toxicants may also inhibit the hERG channel and contribute to the pathophysiology of cardiovascular (CV) diseases. As part of the US federal Tox21 program, the National Center for Advancing Translational Science (NCATS) applied a quantitative high throughput screening (qHTS) approach to screen the Tox21 library of 10,000 compounds (~7871 unique chemicals) at 14 concentrations in triplicate to identify chemicals perturbing hERG activity in the U2OS cell line thallium flux assay platform. The qHTS cell-based thallium influx assay provided a robust and reliable dataset to evaluate the ability of thousands of drugs and environmental chemicals to inhibit hERG channel protein, and the use of chemical structure-based clustering and chemotype enrichment analysis facilitated the identification of molecular features that are likely responsible for the observed hERG activity. We employed several machine-learning approaches to develop QSAR prediction models for the assessment of hERG liabilities for drug-like and environmental chemicals. The training set was compiled by integrating hERG bioactivity data from the ChEMBL database with the Tox21 qHTS thallium flux assay data. The best results were obtained with the random forest method (~92.6% balanced accuracy). The data and scripts used to generate hERG prediction models are provided in an open-access format as key in vitro and in silico tools that can be applied in a translational toxicology pipeline for drug development and environmental chemical screening. Full article
Show Figures

Figure 1

22 pages, 25911 KiB  
Article
The Natural Product β-Escin Targets Cancer and Stromal Cells of the Tumor Microenvironment to Inhibit Ovarian Cancer Metastasis
by Hilary A. Kenny, Peter C. Hart, Kasjusz Kordylewicz, Madhu Lal, Min Shen, Betul Kara, Yen-Ju Chen, Niklas Grassl, Yousef Alharbi, Bikash R. Pattnaik, Karen M. Watters, Manish S. Patankar, Marc Ferrer and Ernst Lengyel
Cancers 2021, 13(16), 3931; https://doi.org/10.3390/cancers13163931 - 4 Aug 2021
Cited by 19 | Viewed by 4456
Abstract
The high mortality of OvCa is caused by the wide dissemination of cancer within the abdominal cavity. OvCa cells metastasize to the peritoneum, which is covered by mesothelial cells, and invade into the underlying stroma, composed of extracellular matrices (ECM) and stromal cells. [...] Read more.
The high mortality of OvCa is caused by the wide dissemination of cancer within the abdominal cavity. OvCa cells metastasize to the peritoneum, which is covered by mesothelial cells, and invade into the underlying stroma, composed of extracellular matrices (ECM) and stromal cells. In a study using a three-dimensional quantitative high-throughput screening platform (3D-qHTS), we found that β-escin, a component of horse chestnut seed extract, inhibited OvCa adhesion/invasion. Here, we determine whether β-escin and structurally similar compounds have a therapeutic potential against OvCa metastasis. Different sources of β-escin and horse chestnut seed extract inhibited OvCa cell adhesion/invasion, both in vitro and in vivo. From a collection of 160 structurally similar compounds to β-escin, we found that cardiac glycosides inhibited OvCa cell adhesion/invasion and proliferation in vitro, and inhibited adhesion/invasion and metastasis in vivo. Mechanistically, β-escin and the cardiac glycosides inhibited ECM production in mesothelial cells and fibroblasts. The oral administration of β-escin inhibited metastasis in both OvCa prevention and intervention mouse models. Specifically, β-escin inhibited ECM production in the omental tumors. Additionally, the production of HIF1α-targeted proteins, lactate dehydrogenase A, and hexokinase 2 in omental tumors was blocked by β-escin. This study reveals that the natural compound β-escin has a therapeutic potential because of its ability to prevent OvCa dissemination by targeting both cancer and stromal cells in the OvCa tumor microenvironment. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

12 pages, 1175 KiB  
Article
Sequencing a Strawberry Germplasm Collection Reveals New Viral Genetic Diversity and the Basis for New RT-qPCR Assays
by Alfredo Diaz-Lara, Kristian A. Stevens, Vicki Klaassen, Min Sook Hwang and Maher Al Rwahnih
Viruses 2021, 13(8), 1442; https://doi.org/10.3390/v13081442 - 24 Jul 2021
Cited by 17 | Viewed by 4751
Abstract
Viruses are considered of major importance in strawberry (Fragaria × ananassa Duchesne) production given their negative impact on plant vigor and growth. Strawberry accessions from the National Clonal Germplasm Repository were screened for viruses using high throughput sequencing (HTS). Analyses of sequence [...] Read more.
Viruses are considered of major importance in strawberry (Fragaria × ananassa Duchesne) production given their negative impact on plant vigor and growth. Strawberry accessions from the National Clonal Germplasm Repository were screened for viruses using high throughput sequencing (HTS). Analyses of sequence information from 45 plants identified multiple variants of 14 known viruses, comprising strawberry mottle virus (SMoV), beet pseudo yellows virus (BPYV), strawberry pallidosis-associated virus (SPaV), tomato ringspot virus (ToRSV), strawberry mild yellow edge virus (SMYEV), strawberry vein banding virus (SVBV), strawberry crinkle virus (SCV), strawberry polerovirus 1 (SPV-1), apple mosaic virus (ApMV), strawberry chlorotic fleck virus (SCFaV), strawberry crinivirus 4 (SCrV-4), strawberry crinivirus 3 (SCrV-3), Fragaria chiloensis latent virus (FClLV) and Fragaria chiloensis cryptic virus (FCCV). Genetic diversity of sequenced virus isolates was investigated via sequence homology analysis, and partial-genome sequences were deposited into GenBank. To confirm the HTS results and expand the detection of strawberry viruses, new reverse transcription quantitative PCR (RT-qPCR) assays were designed for the above-listed viruses. Further in silico and in vitro validation of the new diagnostic assays indicated high efficiency and reliability. Thus, the occurrence of different viruses, including divergent variants, among the strawberries was verified. This is the first viral metagenomic survey in strawberry, additionally, this study describes the design and validation of multiple RT-qPCR assays for strawberry viruses, which represent important detection tools for clean plant programs. Full article
(This article belongs to the Special Issue Plant Virus Surveillance and Metagenomics)
Show Figures

Figure 1

18 pages, 2190 KiB  
Article
Assessment of Ciguatera and Other Phycotoxin-Related Risks in Anaho Bay (Nuku Hiva Island, French Polynesia): Molecular, Toxicological, and Chemical Analyses of Passive Samplers
by Mélanie Roué, Kirsty F. Smith, Manoella Sibat, Jérôme Viallon, Kévin Henry, André Ung, Laura Biessy, Philipp Hess, Hélène Taiana Darius and Mireille Chinain
Toxins 2020, 12(5), 321; https://doi.org/10.3390/toxins12050321 - 13 May 2020
Cited by 14 | Viewed by 4380
Abstract
Ciguatera poisoning is a foodborne illness caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates from the genera Gambierdiscus and Fukuyoa. The suitability of Solid Phase Adsorption Toxin Tracking (SPATT) technology for the monitoring of dissolved CTXs in [...] Read more.
Ciguatera poisoning is a foodborne illness caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates from the genera Gambierdiscus and Fukuyoa. The suitability of Solid Phase Adsorption Toxin Tracking (SPATT) technology for the monitoring of dissolved CTXs in the marine environment has recently been demonstrated. To refine the use of this passive monitoring tool in ciguateric areas, the effects of deployment time and sampler format on the adsorption of CTXs by HP20 resin were assessed in Anaho Bay (Nuku Hiva Island, French Polynesia), a well-known ciguatera hotspot. Toxicity data assessed by means of the mouse neuroblastoma cell-based assay (CBA-N2a) showed that a 24 h deployment of 2.5 g of resin allowed concentrating quantifiable amounts of CTXs on SPATT samplers. The CTX levels varied with increasing deployment time, resin load, and surface area. In addition to CTXs, okadaic acid (OA) and dinophysistoxin-1 (DTX1) were also detected in SPATT extracts using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), consistent with the presence of Gambierdiscus and Prorocentrum species in the environment, as assessed by quantitative polymerase chain reaction (qPCR) and high-throughput sequencing (HTS) metabarcoding analyses conducted on passive window screen (WS) artificial substrate samples. Although these preliminary findings await further confirmation in follow-up studies, they highlight the usefulness of SPATT samplers in the routine surveillance of CP risk on a temporal scale, and the monitoring of other phycotoxin-related risks in ciguatera-prone areas. Full article
(This article belongs to the Special Issue Ciguatoxins)
Show Figures

Figure 1

Back to TopTop