Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = quadrature local oscillator (LO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 15113 KiB  
Article
Performance Evaluation of GaAs and InGaAs Schottky Mixers at 0.3 THz: A Comparative Analysis Between Optical and Electrical Pumping in THz Wireless Communication Systems
by Javier Martinez-Gil, Iñigo Belio-Apaolaza, Jonas Tebart, Jose Luis Fernández Estévez, Diego Moro-Melgar, Cyril C. Renaud, Andreas Stöhr and Oleg Cojocari
Electronics 2025, 14(10), 1957; https://doi.org/10.3390/electronics14101957 - 11 May 2025
Viewed by 650
Abstract
Gallium Arsenide (GaAs) Schottky technology stands out for its superior performance in terms of conversion loss for terahertz mixers at room temperatures, which establishes it as a dominant solution in receivers for high-data-rate wireless communications. However, Indium Gallium Arsenide (InGaAs) Schottky mixers offer [...] Read more.
Gallium Arsenide (GaAs) Schottky technology stands out for its superior performance in terms of conversion loss for terahertz mixers at room temperatures, which establishes it as a dominant solution in receivers for high-data-rate wireless communications. However, Indium Gallium Arsenide (InGaAs) Schottky mixers offer a notable advantage in terms of reduced power requirements due to their lower barrier height, enabling optical pumping with the incorporation of photodiodes acting as photonic local oscillators (LOs). In this study, we present the first comparative analysis of GaAs and InGaAs diode technologies under both electrical and optical pumping, which are also being compared for the first time, particularly in the context of a wireless communication system, transmitting up to 80 Gbps at 0.3 THz using 16-quadrature amplitude modulation (QAM). The terahertz transmitter and the optical receiver’s LO are based on modified uni-traveling-carrier photodiodes (MUTC-PDs) driven by free-running lasers. The investigation covers a total of two mixers, including narrow-band GaAs and InGaAs. The results reveal that, despite InGaAs mixers exhibiting higher conversion loss, the bit error rate (BER) can be as low as that with GaAs. This is attributed to the purity of optically generated LO signals in the receiver. This work positions InGaAs Schottky technology as a compelling candidate for terahertz reception in the context of optical wireless communication systems. Full article
(This article belongs to the Section Optoelectronics)
Show Figures

Figure 1

13 pages, 2529 KiB  
Article
A Filter-Free, Image-Reject, Sub-Harmonic Downconverted RoF Link Without Fiber-Dispersion-Induced Power Fading
by Yuanyuan Li, Qiong Zhao and Wu Zhang
Photonics 2024, 11(12), 1191; https://doi.org/10.3390/photonics11121191 - 19 Dec 2024
Viewed by 883
Abstract
A filter-free, image-reject, sub-harmonic downconverted RoF link is proposed based on a dual-polarization quadrature phase-shift keying (DP–QPSK) modulator. At the remote antenna unit, the receiving radio frequency signal is applied to the upper QPSK modulator to achieve carrier-suppressed single-sideband (CS–SSB) modulation. The local [...] Read more.
A filter-free, image-reject, sub-harmonic downconverted RoF link is proposed based on a dual-polarization quadrature phase-shift keying (DP–QPSK) modulator. At the remote antenna unit, the receiving radio frequency signal is applied to the upper QPSK modulator to achieve carrier-suppressed single-sideband (CS–SSB) modulation. The local oscillator (LO) is applied to the lower QPSK modulator, achieving sub-harmonic single-sideband (SH–SSB) modulation. The I/Q mixing is realized by exploiting a two-channel photonic microwave phase shifter, which mainly consists of a modulator, two polarization controllers, and two polarizers. The image interference signal can be rejected when combing the I and Q IF signals through a 90° electrical hybrid. Because the scheme is simple and filter-free, it has a good image-reject capability over a large frequency tunable range. Moreover, due to the special SH-SSB modulation, the modulated signals are immune to the chromatic dispersion-introduced power fading effect. Last, the sub-harmonic downconverter can decrease the frequency requirement of the LO signal. Experimental results show that an image rejection ratio (IRR) greater than 50 dB can be achieved when transmitted through a 25 km single-mode fiber (SMF). Simultaneously, under different RF signals and IF signals, the IRR has no periodic power fading, only small fluctuations. Image rejection capability of the scheme for the 50-MBaud 16-QAM wideband vector signal is also verified and the demodulation of the desired IF signal with a good EVM of less than 5% is realized. Full article
(This article belongs to the Special Issue New Perspectives in Microwave Photonics)
Show Figures

Figure 1

17 pages, 10859 KiB  
Article
A Reconfigurable Local Oscillator Harmonic Mixer with Simultaneous Phase Shifting and Image Rejection
by Bin Wu, Chaoyue Zheng, Hao Zhang and Qingchun Zhao
Electronics 2024, 13(5), 971; https://doi.org/10.3390/electronics13050971 - 3 Mar 2024
Viewed by 1554
Abstract
The multibeam high-throughput satellites (HTS) are regarded as a crucial component in the forthcoming space-based Internet of Things (S-IoT) network. The multi-band frequency conversion capability of HTS is essential for achieving high-capacity information interconnection in the S-IoT network. To enhance the frequency conversion [...] Read more.
The multibeam high-throughput satellites (HTS) are regarded as a crucial component in the forthcoming space-based Internet of Things (S-IoT) network. The multi-band frequency conversion capability of HTS is essential for achieving high-capacity information interconnection in the S-IoT network. To enhance the frequency conversion capability of the on-board payload, a reconfigurable local oscillator (LO) harmonic mixer with simultaneous phase shifting and image-rejection is proposed and demonstrated based on a polarization division multiplexing dual-parallel Mach–Zehnder modulator (PDM-DPMZM). By adjusting the input radio frequency (RF) signal and direct current (DC) bias voltage of the modulator, four different LO frequency-multiplication mixing functions can be achieved. The phase of the generated signal can be flexibly tuned over a full 360° range by controlling the angle α between the polarization direction of the polarizer and one axis of the modulator, and it has a flat amplitude response. When combined with an optical frequency comb, the scheme can be extended to a multi-channel multi-band frequency conversion system with an independent phase tuning capability. Additionally, by adjusting the phase difference between dual channel output signals, it can be reconfigured to implement in-phase/quadrature (I/Q) mixing, double-balanced mixing and image-reject mixing. Full article
Show Figures

Figure 1

13 pages, 6695 KiB  
Article
A 40–50 GHz RF Front-End with Integrated Local Oscillator Leakage Calibration
by Peigen Zhou, Pinpin Yan, Jixin Chen, Zhe Chen and Wei Hong
Micromachines 2023, 14(11), 2105; https://doi.org/10.3390/mi14112105 - 16 Nov 2023
Viewed by 2083
Abstract
This article presents a transmitter (TX) front-end operating at frequencies covering 40–50 GHz, including a differential quadrature mixer with integrated amplitude and phase imbalance tuning, a power amplifier, and a detection mixer (DM) that supports local oscillator (LO) leakage signal or image signal [...] Read more.
This article presents a transmitter (TX) front-end operating at frequencies covering 40–50 GHz, including a differential quadrature mixer with integrated amplitude and phase imbalance tuning, a power amplifier, and a detection mixer (DM) that supports local oscillator (LO) leakage signal or image signal calibration. Benefiting from the amplitude and phase imbalance tuning network of the in-phase quadrature (IQ) signal generator at the LO input, the TX exhibits more than 30 dBc image signal rejection over the full frequency band without any post-calibration. Based on the LO leakage signal fed back by the DM integrated at the RF output, the LO leakage of the TX has been improved by more than 10 dB through the LO leakage calibration module integrated in the quadrature mixer. When the intermediate frequency (IF) signal is fixed at 1 GHz, the TX’s 1 dB compressed output power (OP1 dB) is higher than 13.5 dBm over the operating band. Thanks to the LO leakage signal calibration unit and the IQ signal generator, the TX is compliant with the error vector magnitude (EVM) requirement of the IEEE 802.11aj standard up to the 64-quadrature amplitude modulation (QAM) operating mode. Full article
(This article belongs to the Special Issue Recent Advances in Microwave Components and Devices)
Show Figures

Figure 1

13 pages, 4215 KiB  
Article
Image-Rejected Multi-Band Frequency Down-Conversion Based on Photonic Sampling
by Liuzhu Xu, Di Peng, Yuwen Qin, Jianping Li, Meng Xiang, Ou Xu and Songnian Fu
Photonics 2023, 10(1), 35; https://doi.org/10.3390/photonics10010035 - 29 Dec 2022
Viewed by 2444
Abstract
An image-rejected multi-band frequency down-conversion scheme is proposed and experimentally demonstrated based on photonic sampling. The multi-band radio-frequency (RF) signals to be processed are copied into two replicas in quadrature, which are then sampled by an ultra-short optical pulse train via a polarization-multiplexed [...] Read more.
An image-rejected multi-band frequency down-conversion scheme is proposed and experimentally demonstrated based on photonic sampling. The multi-band radio-frequency (RF) signals to be processed are copied into two replicas in quadrature, which are then sampled by an ultra-short optical pulse train via a polarization-multiplexed modulator. After polarization demultiplexing and detection using a pair of low-speed photodetectors, the multi-band RF signals are simultaneously down-converted to the intermediate frequency (IF) band. The image components can be suppressed by quadrature coupling the two generated IF signals via an electrical 90° hybrid coupler (HC). In the experiment, multi-band RF signals in the frequency range of 6 GHz to 39 GHz are down-converted to the IF band below 4 GHz using a local oscillator (LO) signal at 8 GHz to generate the ultra-short optical pulse train. Image rejection is achieved in the digital domain using digital signal processing to compensate for the amplitude and phase mismatch between the two IF signals and to implement quadrature coupling. In addition, through using an electrical phase shifter, an electrical attenuator, and an electrical 90° HC to achieve quadrature coupling of the two IF signals, image-rejected multi-band frequency down-conversion is also verified in the analog domain. Full article
(This article belongs to the Special Issue Microwave Photonic Techniques)
Show Figures

Figure 1

17 pages, 2488 KiB  
Article
Experimental Evaluation of Sub-Sampling IQ Detection for Low-Level RF Control in Particle Accelerator Systems
by Tomasz Kowalski, Gian Piero Gibiino, Jarosław Szewiński, Krzysztof Czuba, Dominik Rybka, Konrad Chmielewski, Zbigniew Wojciechowski and Maciej Sitek
Sensors 2022, 22(1), 38; https://doi.org/10.3390/s22010038 - 22 Dec 2021
Cited by 4 | Viewed by 4158
Abstract
The low-level radio frequency (LLRF) control system is one of the fundamental parts of a particle accelerator, ensuring the stability of the electro-magnetic (EM) field inside the resonant cavities. It leverages on the precise measurement of the field by in-phase/quadrature (IQ) detection of [...] Read more.
The low-level radio frequency (LLRF) control system is one of the fundamental parts of a particle accelerator, ensuring the stability of the electro-magnetic (EM) field inside the resonant cavities. It leverages on the precise measurement of the field by in-phase/quadrature (IQ) detection of an RF probe signal from the cavities, usually performed using analogue downconversion. This approach requires a local oscillator (LO) and is subject to hardware non-idealities like mixer nonlinearity and long-term temperature drifts. In this work, we experimentally evaluate IQ detection by direct sampling for the LLRF system of the Polish free electron laser (PolFEL) now under development at the National Centre for Nuclear Research (NCBJ) in Poland. We study the impact of the sampling scheme and of the clock phase noise for a 1.3-GHz input sub-sampled by a 400-MSa/s analogue-to-digital converter (ADC), estimating amplitude and phase stability below 0.01% and nearly 0.01°, respectively. The results are in line with state-of-the-art implementations, and demonstrate the feasibility of direct sampling for GHz-range LLRF systems. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 17691 KiB  
Article
A Low Spur and Low Jitter Quadrature LO-Generator Using CML Inductive Peaking Technique for WLAN Transceiver
by Tian Tian, Peng Li, Huiqun Huang, Yilin Pu and Bin Wu
Electronics 2021, 10(15), 1869; https://doi.org/10.3390/electronics10151869 - 3 Aug 2021
Viewed by 3631
Abstract
The demand for a local oscillator (LO) signal of high quality and integrity in local area network (WLAN) communication is growing with the increasing date rate. The LO signals for high data rate WLAN applications are desired to not only have proper shape [...] Read more.
The demand for a local oscillator (LO) signal of high quality and integrity in local area network (WLAN) communication is growing with the increasing date rate. The LO signals for high data rate WLAN applications are desired to not only have proper shape waveforms and adequate voltage amplitude but also to achieve relatively stable and clean outputs with low phase noise and low spur. Fractional-N frequency planning is critical for a quadrature LO-generator, which is achieved by a single-sideband (SSB) mixer and multiple dividers since it can avoid the frequency pulling and alleviate the self-mixing and DC offset issues, while spur levels are easily increased due to harmonic mixing, imbalance, and leakage of the SSB mixer. This article proposes a simple and innovative quadrature LO-generator, which adopts a current-mode-logic (CML) inductive peaking (IP) circuit to improve phase noise and suppress spurious tones. Four types of LO delivery methods using IP circuits are proposed and compared. Among four methods, the CML-IP circuit presents the optimum performance for driving long wires of multi-mm length. Instead of previous digital spur cancellation, the CML-IP circuit achieves higher spur suppression, lower jitter, and a greater figure of merit (FoM). The quadrature LO-generator can be configured to either VCO mode or bypass mode supporting external VCO input. Implemented in 55 nm CMOS technology, the proposed quadrature LO-generator achieves −52.6 dBc spur suppression, −142 dBc/Hz phase noise at 1 MHz offset at the 4.8 GHz frequency, and −271 FoM. Furthermore, the quadrature LO-generator occupies an active area of 0.178 mm2 and consumes 23.86 mW. Full article
(This article belongs to the Special Issue RF/Mm-Wave Circuits Design and Applications)
Show Figures

Figure 1

11 pages, 1986 KiB  
Article
Spin Laser Local Oscillators for Homodyne Detection in Coherent Optical Communications
by Nobuhide Yokota and Hiroshi Yasaka
Micromachines 2021, 12(5), 573; https://doi.org/10.3390/mi12050573 - 18 May 2021
Cited by 13 | Viewed by 3877
Abstract
We numerically investigate spin-controlled vertical-cavity surface-emitting lasers (spin-VCSELs) for local oscillators, which are based on an injection locking technique used in coherent optical communications. Under the spin polarization modulation of an injection-locked spin-VCSEL, frequency-shifted and phase-correlated optical sidebands are generated with an orthogonal [...] Read more.
We numerically investigate spin-controlled vertical-cavity surface-emitting lasers (spin-VCSELs) for local oscillators, which are based on an injection locking technique used in coherent optical communications. Under the spin polarization modulation of an injection-locked spin-VCSEL, frequency-shifted and phase-correlated optical sidebands are generated with an orthogonal polarization against the injection light, and one of the sidebands is resonantly enhanced due to the linear birefringence in the spin-VCSEL. We determine that the peak strength and peak frequency in the spin polarization modulation sensitivity of the injection-locked spin-VCSEL depend on detuning frequency and injection ratio conditions. As a proof of concept, 25-Gbaud and 16-ary quadrature amplitude modulation optical data signals and a pilot tone are generated, and the pilot tone is used for the injection locking of a spin-VCSEL. An orthogonally-polarized modulation sideband generated from the injection-locked spin-VCSEL is used as a frequency-shifted local oscillator (LO). We verify that the frequency-shifted LO can be used for the homodyne detection of optical data signals with no degradation. Our findings suggest a novel application of spin-VCSELs for coherent optical communications. Full article
(This article belongs to the Special Issue Spin-Photonic Devices and Its Applications)
Show Figures

Figure 1

17 pages, 1756 KiB  
Article
A Local Oscillator Phase Compensation Technique for Ultra-Wideband Stepped-Frequency Continuous Wave Radar Based on a Low-Cost Software-Defined Radio
by Kazunori Takahashi and Takashi Miwa
Sensors 2021, 21(3), 780; https://doi.org/10.3390/s21030780 - 24 Jan 2021
Cited by 2 | Viewed by 3599
Abstract
The paper discusses a way to configure a stepped-frequency continuous wave (SFCW) radar using a low-cost software-defined radio (SDR). The most of high-end SDRs offer multiple transmitter (TX) and receiver (RX) channels, one of which can be used as the reference channel for [...] Read more.
The paper discusses a way to configure a stepped-frequency continuous wave (SFCW) radar using a low-cost software-defined radio (SDR). The most of high-end SDRs offer multiple transmitter (TX) and receiver (RX) channels, one of which can be used as the reference channel for compensating the initial phases of TX and RX local oscillator (LO) signals. It is same as how commercial vector network analyzers (VNAs) compensate for the LO initial phase. These SDRs can thus acquire phase-coherent in-phase and quadrature (I/Q) data without additional components and an SFCW radar can be easily configured. On the other hand, low-cost SDRs typically have only one transmitter and receiver. Therefore, the LO initial phase has to be compensated and the phases of the received I/Q signals have to be retrieved, preferably without employing an additional receiver and components to retain the system low-cost and simple. The present paper illustrates that the difference between the phases of TX and RX LO signals varies when the LO frequency is changed because of the timing of the commencement of the mixing. The paper then proposes a technique to compensate for the LO initial phases using the internal RF loopback of the transceiver chip and to reconstruct a pulse, which requires two streaming: one for the device under test (DUT) channel and the other for the internal RF loopback channel. The effect of the LO initial phase and the proposed method for the compensation are demonstrated by experiments at a single frequency and sweeping frequency, respectively. The results show that the proposed method can compensate for the LO initial phases and ultra-wideband (UWB) pulses can be reconstructed correctly from the data sampled by a low-cost SDR. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

14 pages, 9559 KiB  
Article
I/Q Linear Phase Imbalance Estimation Technique of the Wideband Zero-IF Receiver
by Jie Meng, Houjun Wang, Peng Ye, Yu Zhao, Lianping Guo, Hao Zeng and Yu Tian
Electronics 2020, 9(11), 1787; https://doi.org/10.3390/electronics9111787 - 28 Oct 2020
Cited by 4 | Viewed by 5418
Abstract
The in-phase/quadrature (I/Q) imbalance encountered in the zero-IF receiver leads to incomplete image frequency suppression, which severely deteriorates image rejection ratio (IRR) of the receiver system and must be improved using additional analog or digital signal processing. The I/Q linear phase imbalance (LPI) [...] Read more.
The in-phase/quadrature (I/Q) imbalance encountered in the zero-IF receiver leads to incomplete image frequency suppression, which severely deteriorates image rejection ratio (IRR) of the receiver system and must be improved using additional analog or digital signal processing. The I/Q linear phase imbalance (LPI) is the key of the I/Q imbalance, which consists of the time delay deviation (TDD) and the local oscillator (LO) phase offset. TDD is negligible in most literature, but it degrades system performance largely for wideband communication systems. This paper proposes a method based on the cross-power spectrum between the I/Q signal to address the estimation problem of LPI. Compared with other conventional methods, the proposed approach calculates LPI parameters simultaneously without any additional hardware. The MATLAB simulation is utilized to evaluate the effectiveness of the presented method. Moreover, the experimental platform of detailed design demonstrates the feasibility of the proposed estimation method, and IRR of the system before and after compensation shows that LPI has been accurately estimated and eliminated with the help of an appropriate compensation structure. Both reveal that the proposed method offers an effective solution to the LPI problem. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

16 pages, 3870 KiB  
Article
Impact of Equalization-Enhanced Phase Noise on Digital Nonlinearity Compensation in High-Capacity Optical Communication Systems
by Jiazheng Ding, Tianhua Xu, Cenqin Jin, Ziyihui Wang, Jian Zhao and Tiegen Liu
Sensors 2020, 20(15), 4149; https://doi.org/10.3390/s20154149 - 26 Jul 2020
Cited by 6 | Viewed by 3493
Abstract
Equalization-enhanced phase noise (EEPN) can severely degrade the performance of long-haul optical fiber transmission systems. In this paper, the impact of EEPN in Nyquist-spaced dual-polarization quadrature phase shift keying (DP-QPSK), dual-polarization 16-ary quadrature amplitude modulation (DP-16QAM), and DP-64QAM optical transmission systems is investigated [...] Read more.
Equalization-enhanced phase noise (EEPN) can severely degrade the performance of long-haul optical fiber transmission systems. In this paper, the impact of EEPN in Nyquist-spaced dual-polarization quadrature phase shift keying (DP-QPSK), dual-polarization 16-ary quadrature amplitude modulation (DP-16QAM), and DP-64QAM optical transmission systems is investigated considering the use of electrical dispersion compensation (EDC) and multi-channel digital backpropagation (MC-DBP). Our results demonstrate that full-field DBP (FF-DBP) is more susceptible to EEPN compared to single-channel and partial-bandwidth DBP. EEPN-induced distortions become more significant with the increase of the local oscillator (LO) laser linewidth, and this results in degradations in bit-error-rates (BERs), achievable information rates (AIRs), and AIR-distance products in optical communication systems. Transmission systems using higher-order modulation formats can enhance information rates and spectral efficiencies, but will be more seriously degraded by EEPN. It is found that degradations on AIRs, for the investigated FF-DBP schemes, in the DP-QPSK, the DP-16QAM, and the DP-64QAM systems are 0.07 Tbit/s, 0.11 Tbit/s, and 0.57 Tbit/s, respectively, due to the EEPN with an LO laser linewidth of 1 MHz. It is also seen that the selection of a higher-quality LO laser can significantly reduce the bandwidth requirement and the computational complexity in the MC-DBP. Full article
Show Figures

Figure 1

12 pages, 3187 KiB  
Article
An Ultra-Wideband Microwave Photonic Channelized Receiver with Zero-IF Architecture
by Bo Chen, Yangyu Fan, Zhou Tian, Wuying Wang, Bochao Kang, Wei Jiang and Yongsheng Gao
Appl. Sci. 2020, 10(1), 30; https://doi.org/10.3390/app10010030 - 19 Dec 2019
Cited by 13 | Viewed by 4325
Abstract
A scheme for realizing a zero-intermediate frequency (IF) channelized receiver using a dual-polarization quadrature phase-shift keying (DP-QPSK) modulator and a narrow-band optical filter is proposed. The channelized system only requires one optical frequency comb to achieve zero-IF multi-channel reception of wideband signals, and [...] Read more.
A scheme for realizing a zero-intermediate frequency (IF) channelized receiver using a dual-polarization quadrature phase-shift keying (DP-QPSK) modulator and a narrow-band optical filter is proposed. The channelized system only requires one optical frequency comb to achieve zero-IF multi-channel reception of wideband signals, and the spacing of the optical frequency comb only needs to be equal to the sub-channel width, which is very easy to implement. It is found that using photonic IQ demodulation and balanced detection and reception technology can not only eliminate many disadvantages of the traditional zero-IF receiver, including local oscillator (LO) leakage, direct current (DC) offset, even-order distortion, and in-phase/quadrature (I/Q) imbalance, but also reduce the bandwidth and sample rate of the analog-to-digital converter (ADC). It is theoretically proven that the radio frequency (RF) signal with a bandwidth of 3 GHz can be divided into five sub-channels with a bandwidth of 600 MHz and finally demodulated to I/Q basebands, which are also verified with simulation. Full article
(This article belongs to the Special Issue Photonic Technology in 5G)
Show Figures

Figure 1

15 pages, 852 KiB  
Article
Numerical Investigation of the Equalization Enhanced Phase Noise Penalty for M-Quadrature Amplitude Modulation Formats in Short-Haul Few-Mode Fiber Transmission Systems with Time-Domain Equalization
by José Manuel Delgado Mendinueta, Werner Klaus, Jun Sakaguchi, Satoshi Shinada, Hideaki Furukawa, Yoshinari Awaji and Naoya Wada
Appl. Sci. 2018, 8(11), 2182; https://doi.org/10.3390/app8112182 - 7 Nov 2018
Cited by 2 | Viewed by 3370
Abstract
The equalization enhanced phase noise (EEPN), caused by the interaction of the chromatic dispersion (CD) with the phase noise of the local oscillator (LO), has been extensively studied for single-mode optical communication systems. Few-mode fiber (FMF) transmission systems introduce a new channel impairment, [...] Read more.
The equalization enhanced phase noise (EEPN), caused by the interaction of the chromatic dispersion (CD) with the phase noise of the local oscillator (LO), has been extensively studied for single-mode optical communication systems. Few-mode fiber (FMF) transmission systems introduce a new channel impairment, the differential mode delay (DMD), which also creates EEPN and hence limits the maximum transmission distance of those systems. In this work, we numerically investigate the optical signal to noise ratio (OSNR) penalties caused by the EEPN in a 3-mode FMF transmission system at 25 GBd for quadrature phase-shift keying (QPSK), 16-quadrature amplitude modulation (QAM), 32-QAM and 64-QAM modulation formats when using the blind phase search (BPS) carrier phase recovery (CPR) algorithm, which has been demonstrated to be both robust and suitable for optical communication systems. Our numerical study assumes a short-span of FMF, modeled in the weakly-coupled regime, and includes two cases; the use of ideal mode-selective de/multiplexers at both ends of the FMF span (model A), and the use of ideal non-mode-selective de/multiplexers (model B). The results show that the EEPN has almost no effect in model A. However, EEPN produces a severe penalty in model B with the onset of the OSNR degradation starting for a DMD spread of the impulse response of about 100 symbols for all modulation formats investigated. The distribution ratio of the amount of phase noise between the transmitter and receiver lasers is also assessed for model B and we confirm that the degradation is mainly due to the phase noise of the LO. Full article
(This article belongs to the Special Issue DSP for Next Generation Fibre Communication Systems)
Show Figures

Figure 1

13 pages, 3461 KiB  
Article
Enhancing Extractable Quantum Entropy in Vacuum-Based Quantum Random Number Generator
by Xiaomin Guo, Ripeng Liu, Pu Li, Chen Cheng, Mingchuan Wu and Yanqiang Guo
Entropy 2018, 20(11), 819; https://doi.org/10.3390/e20110819 - 24 Oct 2018
Cited by 24 | Viewed by 5322
Abstract
Information-theoretically provable unique true random numbers, which cannot be correlated or controlled by an attacker, can be generated based on quantum measurement of vacuum state and universal-hashing randomness extraction. Quantum entropy in the measurements decides the quality and security of the random number [...] Read more.
Information-theoretically provable unique true random numbers, which cannot be correlated or controlled by an attacker, can be generated based on quantum measurement of vacuum state and universal-hashing randomness extraction. Quantum entropy in the measurements decides the quality and security of the random number generator (RNG). At the same time, it directly determines the extraction ratio of true randomness from the raw data, in other words, it obviously affects quantum random bits generating rate. In this work, we commit to enhancing quantum entropy content in the vacuum noise based quantum RNG. We have taken into account main factors in this proposal to establish the theoretical model of quantum entropy content, including the effects of classical noise, the optimum dynamical analog-digital convertor (ADC) range, the local gain and the electronic gain of the homodyne system. We demonstrate that by amplifying the vacuum quantum noise, abundant quantum entropy is extractable in the step of post-processing even classical noise excursion, which may be deliberately induced by an eavesdropper, is large. Based on the discussion and the fact that the bandwidth of quantum vacuum noise is infinite, we propose large dynamical range and moderate TIA gain to pursue higher local oscillator (LO) amplification of vacuum quadrature and broader detection bandwidth in homodyne system. High true randomness extraction ratio together with high sampling rate is attainable. Experimentally, an extraction ratio of true randomness of 85.3% is achieved by finite enhancement of the laser power of the LO when classical noise excursions of the raw data is obvious. Full article
(This article belongs to the Special Issue Quantum Probability and Randomness)
Show Figures

Figure 1

Back to TopTop