Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = quadrature demodulation network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 16140 KiB  
Article
Development and Validation of a New Type of Displacement-Based Miniatured Laser Vibrometers
by Ke Yuan, Zhonghua Zhu, Wei Chen and Weidong Zhu
Sensors 2024, 24(16), 5230; https://doi.org/10.3390/s24165230 - 13 Aug 2024
Cited by 1 | Viewed by 1816
Abstract
Developing a miniatured laser vibrometer becomes important for many engineering areas, such as experimental and operational modal analyses, model validation, and structural health monitoring. Due to its compact size and light weight, a miniatured laser vibrometer can be attached to various mobilized platforms, [...] Read more.
Developing a miniatured laser vibrometer becomes important for many engineering areas, such as experimental and operational modal analyses, model validation, and structural health monitoring. Due to its compact size and light weight, a miniatured laser vibrometer can be attached to various mobilized platforms, such as an unmanned aerial vehicle and a robotic arm whose payloads can usually not be large, to achieve a flexible vibration measurement capability. However, integrating optics into a miniaturized laser vibrometer presents several challenges. These include signal interference from ghost reflectance signals generated by the sub-components of integrated photonics, polarization effects caused by waveguide structures, wavelength drifting due to the semiconductor laser, and the poorer noise characteristics of an integrated laser chip compared to a non-integrated circuit. This work proposes a novel chip-based high-precision laser vibrometer by incorporating two or more sets of quadrature demodulation networks into its design. An additional set of quadrature demodulation networks with a distinct reference arm delay line length can be used to conduct real-time compensation to mitigate linear interference caused by temperature and environmental variations. A series of vibration measurements with frequencies ranging from 0.1 Hz to 1 MHz were conducted using the proposed laser vibrometer to show its repeatability and accuracy in vibration and ultrasonic vibration measurements, and its robustness to test surface conditions. The proposed laser vibrometer has the advantage of directly measuring the displacement response of a vibrating structure rather than integrating its velocity response to yield the measured displacement with a conventional laser Doppler vibrometer. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

12 pages, 3142 KiB  
Article
Integrated Neural Network Approach for Enhanced Vital Signal Analysis Using CW Radar
by Won Yeol Yoon and Nam Kyu Kwon
Electronics 2024, 13(13), 2666; https://doi.org/10.3390/electronics13132666 - 7 Jul 2024
Cited by 1 | Viewed by 1497
Abstract
This study introduces a novel approach for analyzing vital signals using continuous-wave (CW) radar, employing an integrated neural network model to overcome the limitations associated with traditional step-by-step signal processing methods. Conventional methods for vital signal monitoring, such as electrocardiograms (ECGs) and sphygmomanometers, [...] Read more.
This study introduces a novel approach for analyzing vital signals using continuous-wave (CW) radar, employing an integrated neural network model to overcome the limitations associated with traditional step-by-step signal processing methods. Conventional methods for vital signal monitoring, such as electrocardiograms (ECGs) and sphygmomanometers, require direct contact and impose constraints on specific scenarios. Conversely, our study primarily focused on non-contact measurement techniques, particularly those using CW radar, which is known for its simplicity but faces challenges such as noise interference and complex signal processing. To address these issues, we propose a temporal convolutional network (TCN)-based framework that seamlessly integrates noise removal, demodulation, and fast Fourier transform (FFT) processes into a single neural network. This integration minimizes cumulative errors and processing time, which are common drawbacks of conventional methods. The TCN was trained using a dataset comprising preprocessed in-phase and quadrature (I/Q) signals from the CW radar and corresponding heart rates measured via ECG. The performance of the proposed method was evaluated based on the L1 loss and accuracy against the moving average of the estimated heart rates. The results indicate that the proposed approach has the potential for efficient and accurate non-contact vital signal analysis, opening new avenues in health monitoring and medical research. Additionally, the integration of CW radar and neural networks in our framework offers a robust and scalable solution, enhancing the practicality of non-contact health monitoring systems in diverse environments. This technology can be leveraged in healthcare robots to provide continuous and unobtrusive monitoring of patients’ vital signs, enabling timely interventions and improving overall patient care. Full article
(This article belongs to the Special Issue Intelligence Control and Applications of Intelligence Robotics)
Show Figures

Figure 1

9 pages, 1270 KiB  
Article
Optoelectronic Device for Measuring Radio Signal Samples and Evaluating Its Accuracy Characteristics
by Olga A. Safaryan, Irina A. Alferova, Marina Yu. Zvezdina and Alexander G. Prygunov
Eng 2023, 4(1), 276-284; https://doi.org/10.3390/eng4010016 - 16 Jan 2023
Cited by 2 | Viewed by 1548
Abstract
When using quadrature signals in radio channels, flat and selective fading, multipath radio reception, intersymbol interference, and jitter occur. In addition to the need to accurately estimate the value of the phase difference at the current and previous clock intervals, a critical factor [...] Read more.
When using quadrature signals in radio channels, flat and selective fading, multipath radio reception, intersymbol interference, and jitter occur. In addition to the need to accurately estimate the value of the phase difference at the current and previous clock intervals, a critical factor in receiving and demodulating such signals is the accuracy of measuring the amplitude of their samples. When demodulating such signals, an approach is possible, the basis of which is to measure the values of individual signal samples at discrete time points with higher accuracy than in existing electronic devices. Such an approach can be implemented by an optoelectronic device in which a coherent luminous flux is formed, the parameters of which are modulated by a voltage proportional to the readings of the received radio signal. Using a modulated light flux, an interferogram is formed, the parameters of which are directly related to the parameters of this light flux and accordingly to the parameters of the received radio signal. This makes it possible, by increasing the accuracy of estimating radio signal samples, to increase the base of the alphabet used for code manipulation, the efficiency of using the allocated frequency band for transmitting information and reduce the probability of a bit error. The article presents a mathematical model for converting the parameters of the received radio signal into the parameters of the generated interferogram. By mathematical modeling the accuracy characteristics of an optoelectronic device for measuring radio signal samples were evaluated. The results of mathematical modeling illustrating the relationship of the parameters of the optical elements of the device with the accuracy of estimates of the radio signal counts are presented. The practical significance of the proposed optoelectronic device can be used as an independent device for analog-to-digital conversion of radio signals, as well as part of demodulators for QAM and OFDM signals in networks and communication systems of 5G and the next generations. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

11 pages, 3664 KiB  
Article
A Joint Automatic Modulation Classification Scheme in Spatial Cognitive Communication
by Mengtao Wang, Youchen Fan, Shengliang Fang, Tianshu Cui and Donghang Cheng
Sensors 2022, 22(17), 6500; https://doi.org/10.3390/s22176500 - 29 Aug 2022
Cited by 6 | Viewed by 2265
Abstract
Automatic modulation discrimination (AMC) is one of the critical technologies in spatial cognitive communication systems. Building a high-performance AMC model in intelligent receivers can help to realize adaptive signal synchronization and demodulation. However, tackling the intra-class diversity problem is challenging to AMC based [...] Read more.
Automatic modulation discrimination (AMC) is one of the critical technologies in spatial cognitive communication systems. Building a high-performance AMC model in intelligent receivers can help to realize adaptive signal synchronization and demodulation. However, tackling the intra-class diversity problem is challenging to AMC based on deep learning (DL), as 16QAM and 64QAM are not easily distinguished by DL networks. In order to overcome the problem, this paper proposes a joint AMC model that combines DL and expert features. In this model, the former builds a neural network that can extract the time series and phase features of in-phase and quadrature component (IQ) samples, which improves the feature extraction capability of the network in similar models; the latter achieves accurate classification of QAM signals by constructing effective feature parameters. Experimental results demonstrate that our proposed joint AMC model performs better than the benchmark networks. The classification accuracy is increased by 11.5% at a 10 dB signal-to-noise ratio (SNR). At the same time, it also improves the discrimination of QAM signals. Full article
(This article belongs to the Special Issue Integration of Satellite-Aerial-Terrestrial Networks)
Show Figures

Figure 1

28 pages, 17784 KiB  
Article
Design and Implementation of a Novel Interferometric Microwave Radiometer for Human Body Temperature Measurement
by Guangmin Sun, Pan Ma, Jie Liu, Chong Shi, Jingyan Ma and Li Peng
Sensors 2021, 21(5), 1619; https://doi.org/10.3390/s21051619 - 25 Feb 2021
Cited by 9 | Viewed by 3736
Abstract
In this paper, the key technology of interferometric microwave thermometer is studied, the research can be applied to the temperature measurement of human body and subcutaneous tissue. This paper proposes a hardware architecture of interferometric microwave thermometer with 2 GHz bandwidth, in which [...] Read more.
In this paper, the key technology of interferometric microwave thermometer is studied, the research can be applied to the temperature measurement of human body and subcutaneous tissue. This paper proposes a hardware architecture of interferometric microwave thermometer with 2 GHz bandwidth, in which the phase shifter is used to correct phase error and the quadrature demodulator is used to realize autocorrelation detection function. The results show that when input power is 7 dBm, the detection sensitivity can reach 176.54 mV/dBm and the temperature resolution of the microwave radiometer can reach 0.4 K. Correction algorithm is designed to improve the accuracy of temperature measurement. After correction, the phase error is reduced from 40° to 1.4° and when temperature changes 0.1 °C, the voltage value changes obviously. Step-by-step calibration and overall calibration are used to calibrate the device. Inversion algorithm can determine the relationship between physical temperature and output voltage. The mean square error of water temperature inversion by multiple linear regression algorithm is 0.607 and that of BP neural network algorithm is 0.334. The inversion accuracy can be improved by reducing the temperature range. Our work provides a promising realization of accurate, rapid and non-contact detection device of human body temperature. Full article
(This article belongs to the Collection Sensors for Gait, Human Movement Analysis, and Health Monitoring)
Show Figures

Figure 1

21 pages, 6691 KiB  
Article
Improved Performance of M-Class PMUs Based on a Magnitude Compensation Model for Wide Frequency Deviations
by Jose Roberto Razo-Hernandez, Ismael Urbina-Salas, Guillermo Tapia-Tinoco, Juan Pablo Amezquita-Sanchez, Martin Valtierra-Rodriguez and David Granados-Lieberman
Mathematics 2020, 8(8), 1361; https://doi.org/10.3390/math8081361 - 14 Aug 2020
Cited by 3 | Viewed by 2819
Abstract
Phasor measurement units (PMUs) are important elements in power systems to monitor and know the real network condition. In order to regulate the performance of PMUs, the IEEE Std. C37.118.1 stablishes two classes—P and M, where the phasor estimation is carried out using [...] Read more.
Phasor measurement units (PMUs) are important elements in power systems to monitor and know the real network condition. In order to regulate the performance of PMUs, the IEEE Std. C37.118.1 stablishes two classes—P and M, where the phasor estimation is carried out using a quadrature oscillator and a low-pass (LP) filter for modulation and demodulation, respectively. The LP filter plays the most important role since it determines the accuracy, response time and rejection capability of both harmonics and aliased signals. In this regard and by considering that the M-class filters are used for more accurate measurements, the IEEE Std. presents different M-class filters for different reporting rates (when a result is given). However, they can degrade their performance under frequency deviations if the LP frequency response is not properly considered. In this work, a unified model for magnitude compensation under frequency deviations for all the M-class filters is proposed, providing the necessary values of compensation to improve their performance. The model considers the magnitude response of the M-class filters for different reporting rates, a normalized frequency range based on frequency dilation and a fitted two-variable function. The effectiveness of the proposal is verified using both static and dynamic conditions for frequency deviations. Besides that, a real-time simulator to generate test signals is also used to validate the proposed methodology. Full article
(This article belongs to the Special Issue Mathematical Methods applied in Power Systems)
Show Figures

Figure 1

20 pages, 2621 KiB  
Article
Energy and Spectrally Efficient Modulation Scheme for IoT Applications
by Hany S. Hussein, Mohamed Elsayed, Mahmoud Fakhry and Usama Sayed Mohamed
Sensors 2018, 18(12), 4382; https://doi.org/10.3390/s18124382 - 11 Dec 2018
Cited by 4 | Viewed by 3298
Abstract
Due to the Internet of Things (IoT) requirements for a high-density network with low-cost and low-power physical (PHY) layer design, the low-power budget transceiver systems have drawn momentous attention lately owing to their superior performance enhancement in both energy efficiency and hardware complexity [...] Read more.
Due to the Internet of Things (IoT) requirements for a high-density network with low-cost and low-power physical (PHY) layer design, the low-power budget transceiver systems have drawn momentous attention lately owing to their superior performance enhancement in both energy efficiency and hardware complexity reduction. As the power budget of the classical transceivers is envisioned by using inefficient linear power amplifiers (PAs) at the transmitter (TX) side and by applying high-resolution analog to digital converters (ADCs) at the receiver (RX) side, the transceiver architectures with low-cost PHY layer design (i.e., nonlinear PA at the TX and one-bit ADC at the RX) are mandated to cope with the vast IoT applications. Therefore, in this paper, we propose the orthogonal shaping pulses minimum shift keying (OSP-MSK) as a multiple-input multiple-output (MIMO) modulation/demodulation scheme in order to design the low-cost transceiver architectures associated with the IoT devices. The OSP-MSK fulfills a low-power budget by using constant envelope modulation (CEM) techniques at the TX side, and by applying a low-resolution one-bit ADC at the RX side. Furthermore, the OSP-MSK provides a higher spectral efficiency compared to the recently introduced MIMO-CEM with the one-bit ADC. In this context, the orthogonality between the in-phase and quadrature-phase components of the OSP are exploited to increase the number of transmitted bits per symbol (bps) without the need for extra bandwidth. The performance of the proposed scheme is investigated analytically and via Monte Carlo simulations. For the mathematical analysis, we derive closed-form expressions for assessing the average bit error rate (ABER) performance of the OSP-MSK modulation in conjunction with Rayleigh and Nakagami-m fading channels. Moreover, a closed-form expression for evaluating the power spectral density (PSD) of the proposed scheme is obtained as well. The simulation results corroborate the potency of the conducted analysis by revealing a high consistency with the obtained analytical formulas. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

Back to TopTop