Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = pulse-type near-fault earthquake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4387 KB  
Article
Seismic Study of An Isolated Cable-Stayed Bridge under Near-Fault Ground Motions
by Haoyuan Gao, Liuyang Li, Zhigang Ding, Lianzhen Zhang, Kun Zhang and Zhihao Luo
Appl. Sci. 2024, 14(14), 6220; https://doi.org/10.3390/app14146220 - 17 Jul 2024
Viewed by 1882
Abstract
During strong earthquakes, pounding may occur on large-span bridges and their approach bridges. The effect and mitigation measures of such pounding have rarely been explored in previous studies. This paper primarily uses finite element models to investigate the pounding effects at the expansion [...] Read more.
During strong earthquakes, pounding may occur on large-span bridges and their approach bridges. The effect and mitigation measures of such pounding have rarely been explored in previous studies. This paper primarily uses finite element models to investigate the pounding effects at the expansion joints between the main cable-stayed bridge and its approach bridge. Friction pendulum bearings (FPBs) and fluid viscous dampers (FVDs) are used to alleviate poundings. Furthermore, a detailed analysis is conducted on how the pounding effect of the isolated main bridge with FPBs and FVDs is affected by the wave passage effect, ground motion type, and soil type. This study reveals that FPBs and FVDs can effectively reduce pounding effects and the associated risks. Even with the installation of FPBs and FVDs, lower seismic wave velocities and near-fault seismic motions with pulse effects can significantly increase the pounding effects between the cable-stayed bridge and its approach bridge. Full article
Show Figures

Figure 1

20 pages, 6506 KB  
Article
Fragility Assessment of a Long-Unit Prestressed Concrete Composite Continuous Girder Bridge with Corrugated Steel Webs Subjected to Near-Fault Pulse-like Ground Motions Considering Spatial Variability Effects
by Mingcheng Han, Yidian Dong, Tong Wang, Mingqu Du and Qingfei Gao
Buildings 2024, 14(2), 330; https://doi.org/10.3390/buildings14020330 - 24 Jan 2024
Cited by 1 | Viewed by 1482
Abstract
Prestressed concrete composite girder bridges with corrugated steel webs (PCCGBCSWs) are extensively employed in bridge construction because of their low dead weight, fast construction, and high prestressing efficiency. Moreover, PCCGBCSWs will experience deformation and failure of the corrugated steel webs, including steel fatigue [...] Read more.
Prestressed concrete composite girder bridges with corrugated steel webs (PCCGBCSWs) are extensively employed in bridge construction because of their low dead weight, fast construction, and high prestressing efficiency. Moreover, PCCGBCSWs will experience deformation and failure of the corrugated steel webs, including steel fatigue and fracture, during earthquakes. These changes will introduce safety hazards, which can be addressed via bridge disaster prevention and mitigation. Because near-fault pulse-like ground motions (NFPLGMs) have high peak accelerations, these motions can easily cause damage to a bridge. Therefore, in this study, a seismic fragility assessment is performed for long-unit PCCGBCSWs subjected to NFPLGMs considering spatial variability effects, and a sensitivity evaluation of the seismic fragility is conducted considering girder type, bearing type, ground motion type, and apparent wave velocity to offer a point of reference for seismic design. The results show that PCCGBCSWs are less vulnerable than concrete bridges. The shock absorption effect of the friction pendulum bearing is better than that of the viscous damper. The impact of NFPLGMs on bridges is greater than that of near-fault non-pulse-like ground motions (NFNPLMs) and far-fault ground motions (FFGMs). The seismic fragility under nonuniform excitation conditions is greater than that under uniform excitation conditions, showing an increasing trend with decreasing apparent wave velocity. Full article
Show Figures

Figure 1

16 pages, 5098 KB  
Article
Dynamic Responses of Concrete-Face Rockfill Dam to Different Site Conditions under Near-Fault Earthquake Excitation
by Mengdie Zhao, Chao Zhang, Xu Li and Ninghuan Zhai
Buildings 2023, 13(10), 2410; https://doi.org/10.3390/buildings13102410 - 22 Sep 2023
Cited by 2 | Viewed by 1685
Abstract
The western region of China is rich in hydropower resources and characterized by unique geological conditions. For the construction or planned construction of high dams in this region, different types of cover layers are formed due to special geological structures, most of which [...] Read more.
The western region of China is rich in hydropower resources and characterized by unique geological conditions. For the construction or planned construction of high dams in this region, different types of cover layers are formed due to special geological structures, most of which are located in high seismic intensity zones. This study focuses on four different site conditions: hard ground, medium–hard ground, medium–soft ground, and weak ground. By simulating the dynamic response of concrete-face rockfill dams under near-fault earthquake excitation, the vertical settlement of the dam and the attenuation of seismic motion under different site conditions are analyzed. The research findings reveal a consistent trend where the vertical settlement of the dams progressively escalates with increasing dam height across all four site conditions. This settlement phenomenon is especially pronounced in weak ground conditions, posing a potential risk of failure. Furthermore, when subjected to near-fault pulse-type earthquake motions, the existence of weak soil layers significantly dampens the seismic forces experienced by the dam. This finding suggests that the weaker the geological conditions of the site, the more pronounced the attenuation effect of the seismic motion. Additionally, the overburden layers have a noticeable amplification effect on near-fault pulse-type earthquake motion. However, this amplification effect is not significant in weak ground, possibly due to the presence of weak soil layers restricting the propagation and amplification of seismic motion. In conclusion, these research findings have practical significance for the dynamic response of high dam construction in different site conditions in the western region of China. They provide a scientific basis for the design and construction of high dams and serve as a reference for the implementation of seismic mitigation measures and earthquake disaster prevention in engineering projects. Full article
(This article belongs to the Special Issue High-Performance Concrete Structures for Disaster Prevention)
Show Figures

Figure 1

21 pages, 17870 KB  
Article
The Duration Effect of Pulse-Type Near-Field Earthquakes on Nonlinear Dynamic Analysis and Damage Evaluation of Hydraulic Tunnels
by Weiying Liu, Benbo Sun, Sherong Zhang, Chao Wang, Wei Cui and Xiaohua Zhao
Appl. Sci. 2023, 13(4), 2041; https://doi.org/10.3390/app13042041 - 4 Feb 2023
Cited by 4 | Viewed by 2556
Abstract
Current research trends in significant hydraulic engineering projects focus on investigating the seismological properties of intensity and frequency content of pulse-type near-field earthquakes on the structural response. Conversely, the duration impact is not expressly addressed in the seismic design code for underground buildings. [...] Read more.
Current research trends in significant hydraulic engineering projects focus on investigating the seismological properties of intensity and frequency content of pulse-type near-field earthquakes on the structural response. Conversely, the duration impact is not expressly addressed in the seismic design code for underground buildings. Currently, various duration indicators of as-recorded strong ground motions mainly consider the effective duration of the initial acceleration component record. In contrast, the duration indicators for the effective velocity duration (EVD) of the original velocity time-history component record have rarely been addressed. Specifically, there is a gap between the effective velocity duration and the structural response. To illustrate the impact on the structural response, an EVD of pulse-type NFGM duration was used. This EVD can be calculated for seismic excitations with set threshold values that enable a quantitative examination of the duration effects. A fluid-hydraulic tunnel-rock interaction system was built and used to estimate the seismic response characteristics induced by different duration NFGMs. The investigation’s findings highlight that the inelastic dynamic response and damage degree are strongly affected by the EVD. Additionally, the fixed threshold value of 5–95% showed an excellent correlation coefficient with the structural response. The significant duration was also found to be the most suitable alternative indicator to replace the EVD index. In addition, the reduced time-history methodology of near-fault earthquake records is presented and validated, with this method being used to improve the efficiency of the dynamic time-history analysis of hydraulic arched tunnels. Full article
Show Figures

Figure 1

26 pages, 8244 KB  
Article
Research on the Pounding Response and Pounding Effect of a Continuous Rigid-Frame Bridge with Fabricated Super-High Piers Connected by Grouting Sleeves
by Shaojian Wang, Weibing Xu, Xiaomin Huang, Xiaoyu Yan, Jun Ma, Hang Sun, Jin Wang and Yanjiang Chen
Sustainability 2022, 14(18), 11334; https://doi.org/10.3390/su141811334 - 9 Sep 2022
Cited by 4 | Viewed by 2152
Abstract
The dynamic characteristics of a continuous rigid-frame bridge with fabricated super-high piers (CRFB-FSP) connected by grouting sleeves and adjacent continuous beam bridges (AB) are significantly different, and they are prone to pounding under earthquake excitation. At present, the pounding response between the CRFB-FSP [...] Read more.
The dynamic characteristics of a continuous rigid-frame bridge with fabricated super-high piers (CRFB-FSP) connected by grouting sleeves and adjacent continuous beam bridges (AB) are significantly different, and they are prone to pounding under earthquake excitation. At present, the pounding response between the CRFB-FSP and AB is still unclear, and the impact of the pounding on the seismic performance of a CRFB-FSP is still in the exploratory stage. In this study, two 1/20 scaled models of a CRFB-FSP (MB) and a cast-in-place AB were designed and manufactured. Then, according to the research purpose and the output performance of the shaking table, three each of non-long-period (NLP) ground motions and near-fault pulse-type (NFPT) ground motions were selected as the inputs of the excitation shaking table test. The peak ground acceleration (PGA) changes from 0.5 g to 1.5 g. According to the similarity ratio (1/20), the initial gap between the MB and AB was taken as 7 mm (prototype design: 140 mm). Furthermore, the longitudinal pounding response between the CFRB-FSP and AB, as well as its influence on the seismic performance of the CFRB-FSP, was systematically investigated through a shaking table test and finite element analysis (FEA). The results showed that the pounding with the CRFB-FSP easily caused a persistent pounding, which may increase the damage risk of the pier. The peak pounding force under the NFPT ground motion was more significant than under the NLP ground motion, whereas the pounding number under the NFPT ground motion was smaller. The peak pounding force increased with the increase in the initial gap, pounding stiffness, span, and pier height. With and without pounding, the CRFB-FSP reflected higher-order mode participation (HMP) characteristics. After pounding, under the NFPT excitation, the HMP contribution increased significantly compared with that of the without pounding condition, while this effect under the NLP excitation was smaller. The peak displacement of the main beam of the CRFB-FSP increased with the increase in the main beam span, pier height and initial gap. The peak bending moment of the pier bottom increased with the increase in the main beam span and initial gap, however, decreased with the increase in the pier height. Moreover, the peak displacement of the main beam and the peak moment of the pier bottom of the CRFB-FSP both reduced. In contrast, the corresponding seismic response of the AB increased under the same conditions. Full article
Show Figures

Figure 1

16 pages, 17937 KB  
Article
Quantification of Energy-Related Parameters for Near-Fault Pulse-Like Seismic Ground Motions
by Omar AlShawa, Giulia Angelucci, Fabrizio Mollaioli and Giuseppe Quaranta
Appl. Sci. 2020, 10(21), 7578; https://doi.org/10.3390/app10217578 - 27 Oct 2020
Cited by 9 | Viewed by 2614
Abstract
An energy-based approach facilitates the explicit consideration of the damage associated with both maximum displacements and cumulative plastic deformations under earthquakes. For structural systems that can undergo pulse-like seismic ground motions close to causative faults, an energy-based approach is deemed especially appropriate with [...] Read more.
An energy-based approach facilitates the explicit consideration of the damage associated with both maximum displacements and cumulative plastic deformations under earthquakes. For structural systems that can undergo pulse-like seismic ground motions close to causative faults, an energy-based approach is deemed especially appropriate with respect to well-established force- or displacement-based strategies. In such a case, in fact, most of the damage is attributable to the dominant pulse-like component, which usually occurs into the velocity time history of the seismic ground motion, thus implying high energy levels imparted to a structural system. In order to enable the implementation of an energy-based approach in the analysis and design of structures under near-fault pulse-like seismic ground motions, this study presents a comprehensive numerical investigation about the influence of seismological parameters and hysteretic behavior on the spectra of the following energy-related parameters: inelastic absolute and relative input energy; input energy reduction factor; hysteretic energy dissipation demand; hysteretic energy reduction factor; dimensionless cumulative plastic deformation ratio. Closed-form approximations are proposed for these spectra, and the numerical values of the corresponding parameters have been also calibrated (with reference to both mean and standard deviation values) as functions of earthquake magnitude, type of hysteretic behavior (i.e., non-degrading or degrading) and ductility level. The outcomes of this study are meant to support the derivation of design spectra for the energy-based seismic design of structures under near-fault pulse-like seismic ground motions. Full article
(This article belongs to the Special Issue Effects of Near-Fault Ground Motions on Civil Infrastructure)
Show Figures

Figure 1

17 pages, 3460 KB  
Article
Seismic Behavior of a Bridge with New Composite Tall Piers under Near-Fault Ground Motion Conditions
by Zhehan Cai, Zhijian Wang, Kaiqi Lin, Ying Sun and Weidong Zhuo
Appl. Sci. 2020, 10(20), 7377; https://doi.org/10.3390/app10207377 - 21 Oct 2020
Cited by 17 | Viewed by 3705
Abstract
Currently, the seismic designs of reinforced concrete (RC) bridges with tall piers are often accomplished following the ductility-based seismic design method. Though the collapses of the RC bridges with tall piers can be avoided, they are likely to experience major damage and loss [...] Read more.
Currently, the seismic designs of reinforced concrete (RC) bridges with tall piers are often accomplished following the ductility-based seismic design method. Though the collapses of the RC bridges with tall piers can be avoided, they are likely to experience major damage and loss of functionality when subjected to strong near-fault ground motions. The objectives of this study are to put forward an innovative design concept of a tall-pier system and its application in tall-pier bridges. The concept of the innovative tall-pier system is derived from the principle of earthquake-resilient structures, and is to improve the seismic performances of the tall-pier bridges under strong near-fault ground motions. The proposed tall-pier system has a box section and is composed of four concrete-filled steel tubular (CFST) columns and energy dissipating mild steel plates (EDMSPs). Trial design of a bridge with the new composite tall-pier system is performed based on a typical continuous rigid frame highway bridge with conventional RC box section tall piers. Both static analysis and nonlinear time history analysis of both the bridges with the new composite tall piers and conventional RC tall piers under the near-fault velocity pulse-type ground motions were conducted in Midas Civil2019 and ABAQUS. The results show that: under the design-based earthquake (DBE), the CFST columns and connecting steel beams remain elastic in the bridge with the new composite tall piers, while the damage is found in the replaceable EDMSPs which help dissipate the seismic input energy. The displacement responses of the new bridge are significantly smaller than those of the conventional bridge under DBE. It is concluded that the bridge with the new composite tall piers is seismic resilient under near-fault ground motions. Full article
(This article belongs to the Special Issue Effects of Near-Fault Ground Motions on Civil Infrastructure)
Show Figures

Figure 1

28 pages, 8096 KB  
Article
Seismic Risk Assessment of a Novel Self-Centering Precast Concrete Frame under Near-Fault Ground Motions
by Fangfang Geng, Youliang Ding, Honglei Wu and Kang Yang
Appl. Sci. 2020, 10(18), 6510; https://doi.org/10.3390/app10186510 - 18 Sep 2020
Cited by 8 | Viewed by 2985
Abstract
The damage to structures caused by the velocity pulse effect of near-fault earthquake waves cannot be ignored, yet there are few studies on the risk assessment of seismic performance for precast concrete frame under near-fault earthquake waves. A novel self-centering precast concrete (SCPC) [...] Read more.
The damage to structures caused by the velocity pulse effect of near-fault earthquake waves cannot be ignored, yet there are few studies on the risk assessment of seismic performance for precast concrete frame under near-fault earthquake waves. A novel self-centering precast concrete (SCPC) frame with hysteretic dampers is proposed to obtain great self-recovering and energy consumption characteristics. To accurately assess the seismic behaviors of the novel SCPC frame under the near-fault earthquake waves, a prototype structure is modelled and elastoplastic dynamic analysis is conducted at the design basis earthquake (DBE) and the maximum considered earthquake (MCE) seismic levels. Incremental dynamic analysis and the vulnerability analysis are performed. Annual and 50-year exceeding probabilities of the novel SCPC frame are calculated afterwards. In addition, the reinforced concrete (RC)frame and the traditional SCPC frame are also modelled, whose section sizes, reinforcements arrangement and seismic intensity are consistent with the novel SCPC frame. The dynamic time-history analysis at the two seismic levels are also carried out for two types of frames. The analysis results demonstrate that the novel SCPC frame has great seismic performance and low seismic risk possibility under the near-fault earthquakes loading. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

22 pages, 15472 KB  
Article
Rocking Blocks Stability under Critical Pulses from Near-Fault Earthquakes Using a Novel Energy Based Approach
by Gebran Karam and Mazen Tabbara
Appl. Sci. 2020, 10(17), 5924; https://doi.org/10.3390/app10175924 - 27 Aug 2020
Cited by 9 | Viewed by 3010
Abstract
Following the seminal work of Housner, a novel energy based critical pulse theoretical model is derived to assess the seismic stability of rocking rigid blocks under single pulses from near-fault earthquakes. It is shown that overturning is conditional on the availability of sufficient [...] Read more.
Following the seminal work of Housner, a novel energy based critical pulse theoretical model is derived to assess the seismic stability of rocking rigid blocks under single pulses from near-fault earthquakes. It is shown that overturning is conditional on the availability of sufficient kinetic energy in the exciting pulse and on the inception of rocking. The theoretical model is shown to be in good agreement with discrete element method numerical simulations for similar blocks of sizes 0.5, 1, and 20 m. Similitude rules are established to scale between block sizes and pulse types and tested successfully. The results agree with available experimental data. The proposed stability chart approach provides a practical and simple alternative to the presentation and study of the stability and overturning of blocks published by others in the frequency spectrum domain. For any given rigid block or inverted pendulum structure the model or normalized stability charts provide a method to determine the characteristic period and peak acceleration required for overturning and by extension to identify the critical content of the dominant pulse of a given earthquake signal. Alternatively, the approach could be used in archaeoseismology to identify the characteristics of the dominant pulse content of past earthquakes based on their impacts on various historical and heritage structures. Full article
(This article belongs to the Special Issue Effects of Near-Fault Ground Motions on Civil Infrastructure)
Show Figures

Figure 1

12 pages, 2751 KB  
Article
Evaluation of Soil-Structure Interaction on the Seismic Response of Liquid Storage Tanks under Earthquake Ground Motions
by Mostafa Farajian, Mohammad Iman Khodakarami and Denise-Penelope N. Kontoni
Computation 2017, 5(1), 17; https://doi.org/10.3390/computation5010017 - 12 Mar 2017
Cited by 27 | Viewed by 8830
Abstract
Soil-structure interaction (SSI) could affect the seismic response of structures. Since liquid storage tanks are vital structures and must continue their operation under severe earthquakes, their seismic behavior should be studied. Accordingly, the seismic response of two types of steel liquid storage tanks [...] Read more.
Soil-structure interaction (SSI) could affect the seismic response of structures. Since liquid storage tanks are vital structures and must continue their operation under severe earthquakes, their seismic behavior should be studied. Accordingly, the seismic response of two types of steel liquid storage tanks (namely, broad and slender, with aspect ratios of height to radius equal to 0.6 and 1.85) founded on half-space soil is scrutinized under different earthquake ground motions. For a better comparison, the six considered ground motions are classified, based on their pulse-like characteristics, into two groups, named far and near fault ground motions. To model the liquid storage tanks, the simplified mass-spring model is used and the liquid is modeled as two lumped masses known as sloshing and impulsive, and the interaction of fluid and structure is considered using two coupled springs and dashpots. The SSI effect, also, is considered using a coupled spring and dashpot. Additionally, four types of soils are used to consider a wide variety of soil properties. To this end, after deriving the equations of motion, MATLAB programming is employed to obtain the time history responses. Results show that although the SSI effect leads to a decrease in the impulsive displacement, overturning moment, and normalized base shear, the sloshing (or convective) displacement is not affected by such effects due to its long period. Full article
Show Figures

Figure 1

21 pages, 4000 KB  
Article
Self-Tuning Fuzzy Control for Seismic Protection of Smart Base-Isolated Buildings Subjected to Pulse-Type Near-Fault Earthquakes
by Dahai Zhao, Yang Liu and Hongnan Li
Appl. Sci. 2017, 7(2), 185; https://doi.org/10.3390/app7020185 - 16 Feb 2017
Cited by 12 | Viewed by 6750
Abstract
Pulse-type near-fault earthquakes have obvious long-duration pulses, so they can cause large deformation in a base-isolated system in contrast to non-pulse-type near-fault and far-field earthquakes. This paper proposes a novel self-tuning fuzzy logic control strategy for seismic protection of a base-isolated system, which [...] Read more.
Pulse-type near-fault earthquakes have obvious long-duration pulses, so they can cause large deformation in a base-isolated system in contrast to non-pulse-type near-fault and far-field earthquakes. This paper proposes a novel self-tuning fuzzy logic control strategy for seismic protection of a base-isolated system, which can operate the control force of the piezoelectric friction damper against different types of earthquakes. This control strategy employs a hierarchic control algorithm, in which a higher-level supervisory fuzzy controller is implemented to adjust the input normalization factors and output scaling factor, while a sub-level fuzzy controller effectively determines the command voltage of the piezoelectric friction damper according to current level of earthquakes. The efficiency of the proposed control strategy is also compared with uncontrolled and maximum passive cases. Numerical results reveal that the novel fuzzy logic control strategy can effectively reduce the isolation system deformations without the loss of potential advantages of base-isolated system. Full article
Show Figures

Figure 1

Back to TopTop