Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = pteropine orthoreovirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 13025 KiB  
Article
Establishment of Intestinal Organoid from Rousettus leschenaultii and the Susceptibility to Bat-Associated Viruses, SARS-CoV-2 and Pteropine Orthoreovirus
by Mohamed Elbadawy, Yuki Kato, Nagisa Saito, Kimika Hayashi, Amira Abugomaa, Mio Kobayashi, Toshinori Yoshida, Makoto Shibutani, Masahiro Kaneda, Hideyuki Yamawaki, Tetsuya Mizutani, Chang-Kweng Lim, Masayuki Saijo, Kazuaki Sasaki, Tatsuya Usui and Tsutomu Omatsu
Int. J. Mol. Sci. 2021, 22(19), 10763; https://doi.org/10.3390/ijms221910763 - 5 Oct 2021
Cited by 28 | Viewed by 6975
Abstract
Various pathogens, such as Ebola virus, Marburg virus, Nipah virus, Hendra virus, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, are threatening human health worldwide. The natural hosts of these pathogens are thought to be bats. The [...] Read more.
Various pathogens, such as Ebola virus, Marburg virus, Nipah virus, Hendra virus, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, are threatening human health worldwide. The natural hosts of these pathogens are thought to be bats. The rousette bat, a megabat, is thought to be a natural reservoir of filoviruses, including Ebola and Marburg viruses. Additionally, the rousette bat showed a transient infection in the experimental inoculation of SARS-CoV-2. In the current study, we established and characterized intestinal organoids from Leschenault’s rousette, Rousettus leschenaultii. The established organoids successfully recapitulated the characteristics of intestinal epithelial structure and morphology, and the appropriate supplements necessary for long-term stable culture were identified. The organoid showed susceptibility to Pteropine orthoreovirus (PRV) but not to SARS-CoV-2 in experimental inoculation. This is the first report of the establishment of an expandable organoid culture system of the rousette bat intestinal organoid and its sensitivity to bat-associated viruses, PRV and SARS-CoV-2. This organoid is a useful tool for the elucidation of tolerance mechanisms of the emerging rousette bat-associated viruses such as Ebola and Marburg virus. Full article
(This article belongs to the Special Issue Novel Biorelevant Intestinal Epithelial In Vitro Models)
Show Figures

Figure 1

13 pages, 3082 KiB  
Article
Pteropine Orthoreovirus in an Angolan Soft-Furred Fruit Bat (Lissonycteris angolensis) in Uganda Dramatically Expands the Global Distribution of an Emerging Bat-Borne Respiratory Virus
by Andrew J. Bennett and Tony L. Goldberg
Viruses 2020, 12(7), 740; https://doi.org/10.3390/v12070740 - 9 Jul 2020
Cited by 13 | Viewed by 4028
Abstract
Pteropine orthoreovirus (PRV; Reoviridae: Spinareovirinae) is an emerging bat-borne zoonotic virus that causes influenza-like illness (ILI). PRV has thus far been found only in Australia and Asia, where diverse old-world fruit bats (Pteropodidae) serve as hosts. In this study, [...] Read more.
Pteropine orthoreovirus (PRV; Reoviridae: Spinareovirinae) is an emerging bat-borne zoonotic virus that causes influenza-like illness (ILI). PRV has thus far been found only in Australia and Asia, where diverse old-world fruit bats (Pteropodidae) serve as hosts. In this study, we report the discovery of PRV in Africa, in an Angolan soft-furred fruit bat (Lissonycteris angolensis ruwenzorii) from Bundibugyo District, Uganda. Metagenomic characterization of a rectal swab yielded 10 dsRNA genome segments, revealing this virus to cluster within the known diversity of PRV variants detected in bats and humans in Southeast Asia. Phylogeographic analyses revealed a correlation between geographic distance and genetic divergence of PRVs globally, which suggests a geographic continuum of PRV diversity spanning Southeast Asia to sub-Saharan Africa. The discovery of PRV in an African bat dramatically expands the geographic range of this zoonotic virus and warrants further surveillance for PRVs outside of Southeast Asia. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

11 pages, 1699 KiB  
Article
Detection of Recombinant Rousettus Bat Coronavirus GCCDC1 in Lesser Dawn Bats (Eonycteris spelaea) in Singapore
by Adrian C. Paskey, Justin H. J. Ng, Gregory K. Rice, Wan Ni Chia, Casandra W. Philipson, Randy J.H. Foo, Regina Z. Cer, Kyle A. Long, Matthew R. Lueder, Xiao Fang Lim, Kenneth G. Frey, Theron Hamilton, Danielle E. Anderson, Eric D. Laing, Ian H. Mendenhall, Gavin J. Smith, Lin-Fa Wang and Kimberly A. Bishop-Lilly
Viruses 2020, 12(5), 539; https://doi.org/10.3390/v12050539 - 14 May 2020
Cited by 14 | Viewed by 5623
Abstract
Rousettus bat coronavirus GCCDC1 (RoBat-CoV GCCDC1) is a cross-family recombinant coronavirus that has previously only been reported in wild-caught bats in Yúnnan, China. We report the persistence of a related strain in a captive colony of lesser dawn bats captured in Singapore. Genomic [...] Read more.
Rousettus bat coronavirus GCCDC1 (RoBat-CoV GCCDC1) is a cross-family recombinant coronavirus that has previously only been reported in wild-caught bats in Yúnnan, China. We report the persistence of a related strain in a captive colony of lesser dawn bats captured in Singapore. Genomic evidence of the virus was detected using targeted enrichment sequencing, and further investigated using deeper, unbiased high throughput sequencing. RoBat-CoV GCCDC1 Singapore shared 96.52% similarity with RoBat-CoV GCCDC1 356 (NC_030886) at the nucleotide level, and had a high prevalence in the captive bat colony. It was detected at five out of six sampling time points across the course of 18 months. A partial segment 1 from an ancestral Pteropine orthoreovirus, p10, makes up the recombinant portion of the virus, which shares high similarity with previously reported RoBat-CoV GCCDC1 strains that were detected in Yúnnan, China. RoBat-CoV GCCDC1 is an intriguing, cross-family recombinant virus, with a geographical range that expands farther than was previously known. The discovery of RoBat-CoV GCCDC1 in Singapore indicates that this recombinant coronavirus exists in a broad geographical range, and can persist in bat colonies long-term. Full article
(This article belongs to the Special Issue Pathogenesis of Human and Animal Coronaviruses)
Show Figures

Figure 1

Back to TopTop