Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = pseudoenzymes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2985 KB  
Review
Class IIa HDACs Are Important Signal Transducers with Unclear Enzymatic Activities
by Claudio Brancolini
Biomolecules 2025, 15(8), 1061; https://doi.org/10.3390/biom15081061 - 22 Jul 2025
Viewed by 897
Abstract
Class IIa histone deacetylases (HDACs) are pleiotropic regulators of various differentiation pathways and adaptive responses. They form complexes with other co-repressors and can bind to DNA by interacting with selected transcription factors, with members of the Myocyte Enhancer Factor-2 (MEF2) family being the [...] Read more.
Class IIa histone deacetylases (HDACs) are pleiotropic regulators of various differentiation pathways and adaptive responses. They form complexes with other co-repressors and can bind to DNA by interacting with selected transcription factors, with members of the Myocyte Enhancer Factor-2 (MEF2) family being the best characterized. A notable feature of class IIa HDACs is the substitution of tyrosine for histidine in the catalytic site, which has occurred over the course of evolution and has a profound effect on the efficiency of catalysis against acetyl-lysine. Another distinctive feature of this family of “pseudoenzymes” is the regulated nucleus–cytoplasm shuttling associated with several non-histone proteins that have been identified as potential substrates, including proteins localized in the cytosol. Within the complexity of class IIa HDACs, several aspects deserve further investigation. In the following, I will discuss some of the recent advances in our knowledge of class IIa HDACs. Full article
(This article belongs to the Special Issue Recent Advances in Chromatin and Chromosome Molecular Research)
Show Figures

Graphical abstract

14 pages, 2082 KB  
Review
Pseudophosphatases as Regulators of MAPK Signaling
by Emma Marie Wilber Hepworth and Shantá D. Hinton
Int. J. Mol. Sci. 2021, 22(22), 12595; https://doi.org/10.3390/ijms222212595 - 22 Nov 2021
Cited by 56 | Viewed by 7874
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways are highly conserved regulators of eukaryotic cell function. These enzymes regulate many biological processes, including the cell cycle, apoptosis, differentiation, protein biosynthesis, and oncogenesis; therefore, tight control of the activity of MAPK is critical. Kinases and phosphatases [...] Read more.
Mitogen-activated protein kinase (MAPK) signaling pathways are highly conserved regulators of eukaryotic cell function. These enzymes regulate many biological processes, including the cell cycle, apoptosis, differentiation, protein biosynthesis, and oncogenesis; therefore, tight control of the activity of MAPK is critical. Kinases and phosphatases are well established as MAPK activators and inhibitors, respectively. Kinases phosphorylate MAPKs, initiating and controlling the amplitude of the activation. In contrast, MAPK phosphatases (MKPs) dephosphorylate MAPKs, downregulating and controlling the duration of the signal. In addition, within the past decade, pseudoenzymes of these two families, pseudokinases and pseudophosphatases, have emerged as bona fide signaling regulators. This review discusses the role of pseudophosphatases in MAPK signaling, highlighting the function of phosphoserine/threonine/tyrosine-interacting protein (STYX) and TAK1-binding protein (TAB 1) in regulating MAPKs. Finally, a new paradigm is considered for this well-studied cellular pathway, and signal transduction pathways in general. Full article
Show Figures

Graphical abstract

14 pages, 1710 KB  
Article
Identification and Functional Analysis of a Pseudo-Cysteine Protease from the Midgut Transcriptome of Sphenophorus levis
by Priscila Yumi Tanaka Shibao, Milene Ferro, Fernando Fonseca Pereira de Paula, Bruno Salata Lima and Flávio Henrique-Silva
Int. J. Mol. Sci. 2021, 22(21), 11476; https://doi.org/10.3390/ijms222111476 - 25 Oct 2021
Viewed by 2432
Abstract
The Sphenophorus levis (Coleoptera, Curculionidae) is one of the main pests of sugarcane in Brazil. Although its major digestive proteases are known, its complex digestive process still needs to be further understood. We constructed a transcriptome from the midgut of 30-day-old larvae and [...] Read more.
The Sphenophorus levis (Coleoptera, Curculionidae) is one of the main pests of sugarcane in Brazil. Although its major digestive proteases are known, its complex digestive process still needs to be further understood. We constructed a transcriptome from the midgut of 30-day-old larvae and identified sequences similar to its major digestive protease (cysteine cathepsin Sl-CathL), however, they presented a different amino acid than cysteine in the active cleft. We identified, recombinantly produced, and characterized Sl-CathL-CS, a pseudo cysteine protease, and verified that higher gene expression levels of Sl-CathL-CS occur in the midgut of 30-day old larvae. We reverted the serine residue to cysteine and compared the activity of the mutant (Sl-CathL-mutSC) with Sl-CathL-CS. Sl-CathL-CS presented no protease activity, but Sl-CathL-mutSC hydrolyzed Z-Phe-Arg-AMC (Vmax = 1017.60 ± 135.55, Km = 10.77 mM) and was inhibited by a cysteine protease inhibitor E-64 (Ki = 38.52 ± 1.20 μM), but not by the serine protease inhibitor PMSF. Additionally, Sl-CathL-CS interacted with a sugarcane cystatin, while Sl-CathL-mutSC presented weaker interaction. Finally, protein ligand docking reinforced the differences in the catalytic sites of native and mutant proteins. These results indicate that Sl-CathL-CS is a pseudo-cysteine protease that assists protein digestion possibly by interacting with canecystatins, allowing the true proteases to work. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

16 pages, 3471 KB  
Review
The EphB6 Receptor: Kinase-Dead but Very Much Alive
by Timothy G. Strozen, Jessica C. Sharpe, Evelyn D. Harris, Maruti Uppalapati and Behzad M. Toosi
Int. J. Mol. Sci. 2021, 22(15), 8211; https://doi.org/10.3390/ijms22158211 - 30 Jul 2021
Cited by 11 | Viewed by 3940
Abstract
The Eph receptor tyrosine kinase member EphB6 is a pseudokinase, and similar to other pseudoenzymes has not attracted an equivalent amount of interest as its enzymatically-active counterparts. However, a greater appreciation for the role pseudoenzymes perform in expanding the repertoire of signals generated [...] Read more.
The Eph receptor tyrosine kinase member EphB6 is a pseudokinase, and similar to other pseudoenzymes has not attracted an equivalent amount of interest as its enzymatically-active counterparts. However, a greater appreciation for the role pseudoenzymes perform in expanding the repertoire of signals generated by signal transduction systems has fostered more interest in the field. EphB6 acts as a molecular switch that is capable of modulating the signal transduction output of Eph receptor clusters. Although the biological effects of EphB6 activity are well defined, the molecular mechanisms of EphB6 function remain enigmatic. In this review, we use a comparative approach to postulate how EphB6 acts as a scaffold to recruit adaptor proteins to an Eph receptor cluster and how this function is regulated. We suggest that the evolutionary repurposing of EphB6 into a kinase-independent molecular switch in mammals has involved repurposing the kinase activation loop into an SH3 domain-binding site. In addition, we suggest that EphB6 employs the same SAM domain linker and juxtamembrane domain allosteric regulatory mechanisms that are used in kinase-positive Eph receptors to regulate its scaffold function. As a result, although kinase-dead, EphB6 remains a strategically active component of Eph receptor signaling. Full article
(This article belongs to the Special Issue Eph Receptors and Ephrins)
Show Figures

Figure 1

21 pages, 2663 KB  
Review
The Roles of Pseudophosphatases in Disease
by Andrew M. Mattei, Jonathan D. Smailys, Emma Marie Wilber Hepworth and Shantá D. Hinton
Int. J. Mol. Sci. 2021, 22(13), 6924; https://doi.org/10.3390/ijms22136924 - 28 Jun 2021
Cited by 18 | Viewed by 4200
Abstract
The pseudophosphatases, atypical members of the protein tyrosine phosphatase family, have emerged as bona fide signaling regulators within the past two decades. Their roles as regulators have led to a renaissance of the pseudophosphatase and pseudoenyme fields, catapulting interest from a mere curiosity [...] Read more.
The pseudophosphatases, atypical members of the protein tyrosine phosphatase family, have emerged as bona fide signaling regulators within the past two decades. Their roles as regulators have led to a renaissance of the pseudophosphatase and pseudoenyme fields, catapulting interest from a mere curiosity to intriguing and relevant proteins to investigate. Pseudophosphatases make up approximately fourteen percent of the phosphatase family, and are conserved throughout evolution. Pseudophosphatases, along with pseudokinases, are important players in physiology and pathophysiology. These atypical members of the protein tyrosine phosphatase and protein tyrosine kinase superfamily, respectively, are rendered catalytically inactive through mutations within their catalytic active signature motif and/or other important domains required for catalysis. This new interest in the pursuit of the relevant functions of these proteins has resulted in an elucidation of their roles in signaling cascades and diseases. There is a rapid accumulation of knowledge of diseases linked to their dysregulation, such as neuropathies and various cancers. This review analyzes the involvement of pseudophosphatases in diseases, highlighting the function of various role(s) of pseudophosphatases involvement in pathologies, and thus providing a platform to strongly consider them as key therapeutic drug targets. Full article
Show Figures

Figure 1

Back to TopTop