Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = protease-triggered protein release

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 12979 KiB  
Article
Lactate-Induced HBEGF Shedding and EGFR Activation: Paving the Way to a New Anticancer Therapeutic Opportunity
by Valentina Rossi, Alejandro Hochkoeppler, Marzia Govoni and Giuseppina Di Stefano
Cells 2024, 13(18), 1533; https://doi.org/10.3390/cells13181533 - 13 Sep 2024
Viewed by 1676
Abstract
Cancer cells can release EGF-like peptides, acquiring the capacity of autocrine stimulation via EGFR-mediated signaling. One of these peptides (HBEGF) was found to be released from a membrane-bound precursor protein and is critically implicated in the proliferative potential of cancer cells. We observed [...] Read more.
Cancer cells can release EGF-like peptides, acquiring the capacity of autocrine stimulation via EGFR-mediated signaling. One of these peptides (HBEGF) was found to be released from a membrane-bound precursor protein and is critically implicated in the proliferative potential of cancer cells. We observed that the increased lactate levels characterizing neoplastic tissues can induce the release of uPA, a protease promoting HBEGF shedding. This effect led to EGFR activation and increased ERK1/2 phosphorylation. Since EGFR-mediated signaling potentiates glycolytic metabolism, this phenomenon can induce a self-sustaining deleterious loop, favoring tumor growth. A well characterized HBEGF inhibitor is CRM197, a single-site variant of diphtheria toxin. We observed that, when administered individually, CRM197 did not trigger evident antineoplastic effects. However, its association with a uPA inhibitor caused dampening of EGFR-mediated signaling and apoptosis induction. Overall, our study highlights that the increased glycolytic metabolism and lactate production can foster the activated state of EGFR receptor and suggests that the inhibition of EGFR-mediated signaling can be attempted by means of CRM197 administered with an appropriate protease inhibitor. This attempt could help in overcoming the problem of the acquired resistance to the conventionally used EGFR inhibitors. Full article
(This article belongs to the Special Issue Cell Biology: State-of-the-Art and Perspectives in Italy 2024)
Show Figures

Figure 1

20 pages, 4235 KiB  
Article
PKR Mediates the Mitochondrial Unfolded Protein Response through Double-Stranded RNA Accumulation under Mitochondrial Stress
by Fedho Kusuma, Soyoung Park, Kim Anh Nguyen, Rosalie Elvira, Duckgue Lee and Jaeseok Han
Int. J. Mol. Sci. 2024, 25(14), 7738; https://doi.org/10.3390/ijms25147738 - 15 Jul 2024
Cited by 2 | Viewed by 2233
Abstract
Mitochondrial stress, resulting from dysfunction and proteostasis disturbances, triggers the mitochondrial unfolded protein response (UPRMT), which activates gene encoding chaperones and proteases to restore mitochondrial function. Although ATFS-1 mediates mitochondrial stress UPRMT induction in C. elegans, the mechanisms [...] Read more.
Mitochondrial stress, resulting from dysfunction and proteostasis disturbances, triggers the mitochondrial unfolded protein response (UPRMT), which activates gene encoding chaperones and proteases to restore mitochondrial function. Although ATFS-1 mediates mitochondrial stress UPRMT induction in C. elegans, the mechanisms relaying mitochondrial stress signals to the nucleus in mammals remain poorly defined. Here, we explored the role of protein kinase R (PKR), an eIF2α kinase activated by double-stranded RNAs (dsRNAs), in mitochondrial stress signaling. We found that UPRMT does not occur in cells lacking PKR, indicating its crucial role in this process. Mechanistically, we observed that dsRNAs accumulate within mitochondria under stress conditions, along with unprocessed mitochondrial transcripts. Furthermore, we demonstrated that accumulated mitochondrial dsRNAs in mouse embryonic fibroblasts (MEFs) deficient in the Bax/Bak channels are not released into the cytosol and do not induce the UPRMT upon mitochondrial stress, suggesting a potential role of the Bax/Bak channels in mediating the mitochondrial stress response. These discoveries enhance our understanding of how cells maintain mitochondrial integrity, respond to mitochondrial dysfunction, and communicate stress signals to the nucleus through retrograde signaling. This knowledge provides valuable insights into prospective therapeutic targets for diseases associated with mitochondrial stress. Full article
Show Figures

Figure 1

18 pages, 5570 KiB  
Article
Molecular Mechanisms Involved in the B Cell Growth and Clonogenic Activity of HIV-1 Matrix Protein p17 Variants
by Pasqualina D’Ursi, Alessandro Rondina, Alberto Zani, Matteo Uggeri, Serena Messali, Arnaldo Caruso and Francesca Caccuri
Viruses 2024, 16(7), 1048; https://doi.org/10.3390/v16071048 - 28 Jun 2024
Cited by 2 | Viewed by 1362
Abstract
The human immunodeficiency virus (HIV-1) matrix protein p17 (p17) is released from infected cells as a protein capable of deregulating the biological activity of different cells. P17 variants (vp17s), more frequently detected in the plasma of HIV-1+ patients with rather than without [...] Read more.
The human immunodeficiency virus (HIV-1) matrix protein p17 (p17) is released from infected cells as a protein capable of deregulating the biological activity of different cells. P17 variants (vp17s), more frequently detected in the plasma of HIV-1+ patients with rather than without lymphoma and characterized by amino acids insertions in their C-terminal region, were found to trigger B cell growth and clonogenicity. Vp17s endowed with B-cell-growth-promoting activity are drastically destabilized, whereas, in a properly folded state, reference p17 (refp17) does not exert any biological activity on B cell growth and clonogenicity. However, misfolding of refp17 is necessary to expose a masked functional epitope, interacting with the protease-activated receptor 1 (PAR-1), endowed with B cell clonogenicity. Indeed, it is worth noting that changes in the secondary structure can strongly impact the function of a protein. Here, we performed computational studies to show that the gain of function of vp17s is linked to dramatic conformational changes due to structural modification in the secondary-structure elements and in the rearrangement of the hydrogen bond (H-bond) network. In particular, all clonogenic vp17s showed the disengagement of two critical residues, namely Trp16 and Tyr29, from their hydrophobic core. Biological data showed that the mutation of Trp16 and Tyr29 to Ala in the refp17 backbone, alone or in combination, resulted in a protein endowed with B cell clonogenic activity. These data show the pivotal role of the hydrophobic component in maintaining refp17 stability and identify a novel potential therapeutic target to counteract vp17-driven lymphomagenesis in HIV-1+ patients. Full article
(This article belongs to the Special Issue Virology in Italy 2024)
Show Figures

Figure 1

16 pages, 4359 KiB  
Article
Neutrophil Activity and Extracellular Matrix Degradation: Drivers of Lung Tissue Destruction in Fatal COVID-19 Cases and Implications for Long COVID
by Teluguakula Narasaraju, Indira Neeli, Sheila L. Criswell, Amita Krishnappa, Wenzhao Meng, Vasuki Silva, Galyna Bila, Volodymyr Vovk, Zolotukhin Serhiy, Gary L. Bowlin, Nuala Meyer, Eline T. Luning Prak, Marko Radic and Rostyslav Bilyy
Biomolecules 2024, 14(2), 236; https://doi.org/10.3390/biom14020236 - 17 Feb 2024
Cited by 5 | Viewed by 3832
Abstract
Pulmonary fibrosis, severe alveolitis, and the inability to restore alveolar epithelial architecture are primary causes of respiratory failure in fatal COVID-19 cases. However, the factors contributing to abnormal fibrosis in critically ill COVID-19 patients remain unclear. This study analyzed the histopathology of lung [...] Read more.
Pulmonary fibrosis, severe alveolitis, and the inability to restore alveolar epithelial architecture are primary causes of respiratory failure in fatal COVID-19 cases. However, the factors contributing to abnormal fibrosis in critically ill COVID-19 patients remain unclear. This study analyzed the histopathology of lung specimens from eight COVID-19 and six non-COVID-19 postmortems. We assessed the distribution and changes in extracellular matrix (ECM) proteins, including elastin and collagen, in lung alveoli through morphometric analyses. Our findings reveal the significant degradation of elastin fibers along the thin alveolar walls of the lung parenchyma, a process that precedes the onset of interstitial collagen deposition and widespread intra-alveolar fibrosis. Lungs with collapsed alveoli and organized fibrotic regions showed extensive fragmentation of elastin fibers, accompanied by alveolar epithelial cell death. Immunoblotting of lung autopsy tissue extracts confirmed elastin degradation. Importantly, we found that the loss of elastin was strongly correlated with the induction of neutrophil elastase (NE), a potent protease that degrades ECM. This study affirms the critical role of neutrophils and neutrophil enzymes in the pathogenesis of COVID-19. Consistently, we observed increased staining for peptidyl arginine deiminase, a marker for neutrophil extracellular trap release, and myeloperoxidase, an enzyme-generating reactive oxygen radical, indicating active neutrophil involvement in lung pathology. These findings place neutrophils and elastin degradation at the center of impaired alveolar function and argue that elastolysis and alveolitis trigger abnormal ECM repair and fibrosis in fatal COVID-19 cases. Importantly, this study has implications for severe COVID-19 complications, including long COVID and other chronic inflammatory and fibrotic disorders. Full article
(This article belongs to the Special Issue New Insights into Reactive Oxygen Species in Cell Death and Immunity)
Show Figures

Figure 1

20 pages, 3621 KiB  
Article
Gold Nanoparticles Induced Size Dependent Cytotoxicity on Human Alveolar Adenocarcinoma Cells by Inhibiting the Ubiquitin Proteasome System
by Bashiru Ibrahim, Taiwo Hassan Akere, Swaroop Chakraborty, Eugenia Valsami-Jones and Hanene Ali-Boucetta
Pharmaceutics 2023, 15(2), 432; https://doi.org/10.3390/pharmaceutics15020432 - 28 Jan 2023
Cited by 28 | Viewed by 3351
Abstract
Gold nanoparticles (AuNPs) are widely used in biomedicine due to their remarkable therapeutic applications. However, little is known about their cytotoxic effects on the ubiquitin proteasome system (UPS). Herein, the cytotoxicity of different sizes of AuNPs (5, 10, and 80 nm) on the [...] Read more.
Gold nanoparticles (AuNPs) are widely used in biomedicine due to their remarkable therapeutic applications. However, little is known about their cytotoxic effects on the ubiquitin proteasome system (UPS). Herein, the cytotoxicity of different sizes of AuNPs (5, 10, and 80 nm) on the UPS was investigated with a particular focus on deubiquitinating enzymes (DUBs) such as ubiquitin-specific proteases (USP) and ubiquitin carboxyl-terminal hydrolases (UCHL-1) in human alveolar epithelial adenocarcinoma (A549). It was found that all sizes of AuNPs reduced the percentage of viable A549 cells and increased lactate dehydrogenase (LDH) release, measured using the MTT and LDH assays, respectively. Furthermore, the 5 nm AuNPs were found to exhibit greater cytotoxicity than the 10 and 80 nm AuNPs. In addition, apoptosis and necrosis were activated through reactive oxygen species (ROS) generation due to AuNPs exposure. The internalisation of AuNPs in A549 cells increased with increasing particle size (80 > 10 > 5 nm). Interestingly, the expression of USP7, USP8, USP10, and UCHL-1 was significantly (p < 0.001) downregulated upon treatment with 5–30 µg/mL of all the AuNPs sizes compared to control cells. Moreover, the inhibition of these proteins triggered mitochondrial-related apoptosis through the upregulation of poly (ADP-ribose) polymerase (PARP), caspase-3, and caspase-9. Collectively, these results indicate that AuNPs suppress the proliferation of A549 cells and can potentially be used as novel inhibitors of the proteasome. Full article
Show Figures

Figure 1

25 pages, 1632 KiB  
Review
Tissue Inhibitor of Metalloproteases 3 (TIMP-3): In Vivo Analysis Underpins Its Role as a Master Regulator of Ectodomain Shedding
by Donatella Pia Spanò and Simone Dario Scilabra
Membranes 2022, 12(2), 211; https://doi.org/10.3390/membranes12020211 - 11 Feb 2022
Cited by 7 | Viewed by 4363
Abstract
The proteolytical cleavage of transmembrane proteins with subsequent release of their extracellular domain, so-called ectodomain shedding, is a post-translational modification that plays an essential role in several biological processes, such as cell communication, adhesion and migration. Metalloproteases are major proteases in ectodomain shedding, [...] Read more.
The proteolytical cleavage of transmembrane proteins with subsequent release of their extracellular domain, so-called ectodomain shedding, is a post-translational modification that plays an essential role in several biological processes, such as cell communication, adhesion and migration. Metalloproteases are major proteases in ectodomain shedding, especially the disintegrin metalloproteases (ADAMs) and the membrane-type matrix metalloproteases (MT-MMPs), which are considered to be canonical sheddases for their membrane-anchored topology and for the large number of proteins that they can release. The unique ability of TIMP-3 to inhibit different families of metalloproteases, including the canonical sheddases (ADAMs and MT-MMPs), renders it a master regulator of ectodomain shedding. This review provides an overview of the different functions of TIMP-3 in health and disease, with a major focus on the functional consequences in vivo related to its ability to control ectodomain shedding. Furthermore, herein we describe a collection of mass spectrometry-based approaches that have been used in recent years to identify new functions of sheddases and TIMP-3. These methods may be used in the future to elucidate the pathological mechanisms triggered by the Sorsby’s fundus dystrophy variants of TIMP-3 or to identify proteins released by less well characterized TIMP-3 target sheddases whose substrate repertoire is still limited, thus providing novel insights into the physiological and pathological functions of the inhibitor. Full article
(This article belongs to the Section Biological Membrane Functions)
Show Figures

Figure 1

13 pages, 1305 KiB  
Review
Scramblases as Regulators of Proteolytic ADAM Function
by Karina Reiss, Sinje Leitzke, Jana Seidel, Maria Sperrhacke and Sucharit Bhakdi
Membranes 2022, 12(2), 185; https://doi.org/10.3390/membranes12020185 - 4 Feb 2022
Cited by 12 | Viewed by 3304
Abstract
Proteolytic ectodomain release is a key mechanism for regulating the function of many cell surface proteins. The sheddases ADAM10 and ADAM17 are the best-characterized members of the family of transmembrane disintegrin-like metalloproteinase. Constitutive proteolytic activities are low but can be abruptly upregulated via [...] Read more.
Proteolytic ectodomain release is a key mechanism for regulating the function of many cell surface proteins. The sheddases ADAM10 and ADAM17 are the best-characterized members of the family of transmembrane disintegrin-like metalloproteinase. Constitutive proteolytic activities are low but can be abruptly upregulated via inside-out signaling triggered by diverse activating events. Emerging evidence indicates that the plasma membrane itself must be assigned a dominant role in upregulation of sheddase function. Data are discussed that tentatively identify phospholipid scramblases as central players during these events. We propose that scramblase-dependent externalization of the negatively charged phospholipid phosphatidylserine (PS) plays an important role in the final activation step of ADAM10 and ADAM17. In this manuscript, we summarize the current knowledge on the interplay of cell membrane changes, PS exposure, and proteolytic activity of transmembrane proteases as well as the potential consequences in the context of immune response, infection, and cancer. The novel concept that scramblases regulate the action of ADAM-proteases may be extendable to other functional proteins that act at the cell surface. Full article
Show Figures

Graphical abstract

25 pages, 12063 KiB  
Review
Approaches to the Potential Therapy of COVID-19: A General Overview from the Medicinal Chemistry Perspective
by J. Carlos Menéndez
Molecules 2022, 27(3), 658; https://doi.org/10.3390/molecules27030658 - 20 Jan 2022
Cited by 28 | Viewed by 6814
Abstract
In spite of advances in vaccination, control of the COVID-19 pandemic will require the use of pharmacological treatments against SARS-CoV2. Their development needs to consider the existence of two phases in the disease, namely the viral infection and the inflammatory stages. The main [...] Read more.
In spite of advances in vaccination, control of the COVID-19 pandemic will require the use of pharmacological treatments against SARS-CoV2. Their development needs to consider the existence of two phases in the disease, namely the viral infection and the inflammatory stages. The main targets for antiviral therapeutic intervention are: (a) viral proteins, including the spike (S) protein characteristic of the viral cover and the viral proteases in charge of processing the polyprotein arising from viral genome translation; (b) host proteins, such as those involved in the processes related to viral entry into the host cell and the release of the viral genome inside the cell, the elongation factor eEF1A and importins. The use of antivirals targeted at host proteins is less developed but it has the potential advantage of not being affected by mutations in the genome of the virus and therefore being active against all its variants. Regarding drugs that address the hyperinflammatory phase of the disease triggered by the so-called cytokine storm, the following strategies are particularly relevant: (a) drugs targeting JAK kinases; (b) sphingosine kinase 2 inhibitors; (c) antibodies against interleukin 6 or its receptor; (d) use of the traditional anti-inflammatory corticosteroids. Full article
Show Figures

Figure 1

22 pages, 2486 KiB  
Article
Protease-Triggered Release of Stabilized CXCL12 from Coated Scaffolds in an Ex Vivo Wound Model
by Sabrina Spiller, Tom Wippold, Kathrin Bellmann-Sickert, Sandra Franz, Anja Saalbach, Ulf Anderegg and Annette G. Beck-Sickinger
Pharmaceutics 2021, 13(10), 1597; https://doi.org/10.3390/pharmaceutics13101597 - 1 Oct 2021
Cited by 5 | Viewed by 3337
Abstract
Biomaterials are designed to improve impaired healing of injured tissue. To accomplish better cell integration, we suggest to coat biomaterial surfaces with bio-functional proteins. Here, a mussel-derived surface-binding peptide is used and coupled to CXCL12 (stromal cell-derived factor 1α), a chemokine that activates [...] Read more.
Biomaterials are designed to improve impaired healing of injured tissue. To accomplish better cell integration, we suggest to coat biomaterial surfaces with bio-functional proteins. Here, a mussel-derived surface-binding peptide is used and coupled to CXCL12 (stromal cell-derived factor 1α), a chemokine that activates CXCR4 and consequently recruits tissue-specific stem and progenitor cells. CXCL12 variants with either non-releasable or protease-mediated-release properties were designed and compared. Whereas CXCL12 was stabilized at the N-terminus for protease resistance, a C-terminal linker was designed that allowed for specific cleavage-mediated release by matrix metalloproteinase 9 and 2, since both enzymes are frequently found in wound fluid. These surface adhesive CXCL12 derivatives were produced by expressed protein ligation. Functionality of the modified chemokines was assessed by inositol phosphate accumulation and cell migration assays. Increased migration of keratinocytes and primary mesenchymal stem cells was demonstrated. Immobilization and release were studied for bioresorbable PCL-co-LC scaffolds, and accelerated wound closure was demonstrated in an ex vivo wound healing assay on porcine skin grafts. After 24 h, a significantly improved CXCL12-specific growth stimulation of the epithelial tips was already observed. The presented data display a successful application of protein-coated biomaterials for skin regeneration. Full article
(This article belongs to the Special Issue Trends in Drug Delivery for Wounds Treatment)
Show Figures

Graphical abstract

15 pages, 339 KiB  
Review
Neutrophil Elastase and Chronic Lung Disease
by Judith A. Voynow and Meagan Shinbashi
Biomolecules 2021, 11(8), 1065; https://doi.org/10.3390/biom11081065 - 21 Jul 2021
Cited by 138 | Viewed by 17409
Abstract
Neutrophil elastase (NE) is a major inflammatory protease released by neutrophils and is present in the airways of patients with cystic fibrosis (CF), chronic obstructive pulmonary disease, non-CF bronchiectasis, and bronchopulmonary dysplasia. Although NE facilitates leukocyte transmigration to the site of infection and [...] Read more.
Neutrophil elastase (NE) is a major inflammatory protease released by neutrophils and is present in the airways of patients with cystic fibrosis (CF), chronic obstructive pulmonary disease, non-CF bronchiectasis, and bronchopulmonary dysplasia. Although NE facilitates leukocyte transmigration to the site of infection and is required for clearance of Gram-negative bacteria, it also activates inflammation when released into the airway milieu in chronic inflammatory airway diseases. NE exposure induces airway remodeling with increased mucin expression and secretion and impaired ciliary motility. NE interrupts epithelial repair by promoting cellular apoptosis and senescence and it activates inflammation directly by increasing cytokine expression and release, and indirectly by triggering extracellular trap release and exosome release, which magnify protease activity and inflammation in the airway. NE inhibits innate immune function by digesting opsonins and opsonin receptors, degrading innate immune proteins such as lactoferrin, and inhibiting macrophage phagocytosis. Importantly, NE-directed therapies have not yet been effective in preventing the pathologic sequelae of NE exposure, but new therapies are being developed that offer both direct antiprotease activity and multifunctional anti-inflammatory properties. Full article
(This article belongs to the Collection Feature Papers in Enzymology)
Show Figures

Graphical abstract

18 pages, 2564 KiB  
Article
Endothelial Protease Activated Receptor 1 (PAR1) Signalling Is Required for Lymphocyte Transmigration across Brain Microvascular Endothelial Cells
by Silvia Dragoni, Anna Papageorgiou, Caroline Araiz, John Greenwood and Patric Turowski
Cells 2020, 9(12), 2723; https://doi.org/10.3390/cells9122723 - 21 Dec 2020
Cited by 8 | Viewed by 3826
Abstract
Lymphocyte transendothelial migration (TEM) relies on ICAM-1 engagement on the luminal surface of the endothelial cells (ECs). In blood–brain barrier (BBB) ECs, ICAM-1 triggers TEM signalling, including through JNK MAP kinase and AMP-activated protein kinase (AMPK), which lead to the phosphorylation and internalisation [...] Read more.
Lymphocyte transendothelial migration (TEM) relies on ICAM-1 engagement on the luminal surface of the endothelial cells (ECs). In blood–brain barrier (BBB) ECs, ICAM-1 triggers TEM signalling, including through JNK MAP kinase and AMP-activated protein kinase (AMPK), which lead to the phosphorylation and internalisation of the adherens junction protein VE-cadherin. In addition to ICAM-1, G protein-coupled receptors (GPCRs) are also required for lymphocytes TEM across BBB ECs. Here, we investigated the role of protease activated GPCRs (PARs) and found a specific role for PAR1 in support of lymphocyte TEM across BBB ECs in vitro. PAR1 requirement for TEM was confirmed using protease inhibitors, specific small molecule and peptide antagonists, function blocking antibodies and siRNA-mediated knockdown. In BBB ECs, PAR1 stimulation led to activation of signalling pathways essential to TEM; notably involving JNK and endothelial nitric oxide synthase (eNOS), with the latter downstream of AMPK. In turn, nitric oxide production through eNOS was essential for TEM by modulating VE-cadherin on Y731. Collectively, our data showed that non-canonical PAR1 activation by a lymphocyte-released serine protease is required for lymphocyte TEM across the BBB in vitro, and that this feeds into previously established ICAM-1-mediated endothelial TEM signalling pathways. Full article
(This article belongs to the Special Issue Vascular Signalling)
Show Figures

Graphical abstract

23 pages, 2466 KiB  
Article
Calcium Increase and Substance P Release Induced by the Neurotoxin Brevetoxin-1 in Sensory Neurons: Involvement of PAR2 Activation through Both Cathepsin S and Canonical Signaling
by Ophélie Pierre, Maxime Fouchard, Paul Buscaglia, Nelig Le Goux, Raphaël Leschiera, Olivier Mignen, Joachim W. Fluhr, Laurent Misery and Raphaële Le Garrec
Cells 2020, 9(12), 2704; https://doi.org/10.3390/cells9122704 - 17 Dec 2020
Cited by 4 | Viewed by 3720
Abstract
Red tides involving Karenia brevis expose humans to brevetoxins (PbTxs). Oral exposition triggers neurotoxic shellfish poisoning, whereas inhalation induces a respiratory syndrome and sensory disturbances. No curative treatment is available and the pathophysiology is not fully elucidated. Protease-activated receptor 2 (PAR2), cathepsin S [...] Read more.
Red tides involving Karenia brevis expose humans to brevetoxins (PbTxs). Oral exposition triggers neurotoxic shellfish poisoning, whereas inhalation induces a respiratory syndrome and sensory disturbances. No curative treatment is available and the pathophysiology is not fully elucidated. Protease-activated receptor 2 (PAR2), cathepsin S (Cat-S) and substance P (SP) release are crucial mediators of the sensory effects of ciguatoxins (CTXs) which are PbTx analogs. This work explored the role of PAR2 and Cat-S in PbTx-1-induced sensory effects and deciphered the signaling pathway involved. We performed calcium imaging, PAR2 immunolocalization and SP release experiments in monocultured sensory neurons or co-cultured with keratinocytes treated with PbTx-1 or P-CTX-2. We demonstrated that PbTx-1-induced calcium increase and SP release involved Cat-S, PAR2 and transient receptor potential vanilloid 4 (TRPV4). The PbTx-1-induced signaling pathway included protein kinase A (PKA) and TRPV4, which are compatible with the PAR2 biased signaling induced by Cat-S. Internalization of PAR2 and protein kinase C (PKC), inositol triphosphate receptor and TRPV4 activation evoked by PbTx-1 are compatible with the PAR2 canonical signaling. Our results suggest that PbTx-1-induced sensory disturbances involve the PAR2-TRPV4 pathway. We identified PAR2, Cat-S, PKA, and PKC that are involved in TRPV4 sensitization induced by PbTx-1 in sensory neurons. Full article
(This article belongs to the Special Issue Pain, Itch and Sensory Nerve Endings)
Show Figures

Figure 1

15 pages, 3095 KiB  
Review
Novel Molecular Evidence Related to COVID-19 in Patients with Diabetes Mellitus
by Yu-Huang Liao, Jing-Quan Zheng, Cai-Mei Zheng, Kuo-Cheng Lu and You-Chen Chao
J. Clin. Med. 2020, 9(12), 3962; https://doi.org/10.3390/jcm9123962 - 7 Dec 2020
Cited by 23 | Viewed by 6411
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly evolved into a global pandemic. The hyperglycemia in patients with diabetes mellitus (DM) substantially compromises their innate immune system. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) receptors to [...] Read more.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly evolved into a global pandemic. The hyperglycemia in patients with diabetes mellitus (DM) substantially compromises their innate immune system. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) receptors to enter the affected cell. Uncontrolled hyperglycemia-induced glycosylation of ACE2 and the S protein of SARS-CoV-2 could facilitate the binding of S protein to ACE2, enabling viral entry. Downregulation of ACE2 activity secondary to SARS-CoV-2 infection, with consequent accumulation of angiotensin II and metabolites, eventually leads to poor outcomes. The altered binding of ACE2 with SARS-CoV-2 and the compromised innate immunity of patients with DM increase their susceptibility to COVID-19; COVID-19 induces pancreatic β-cell injury and poor glycemic control, which further compromises the immune response and aggravates hyperglycemia and COVID-19 progression, forming a vicious cycle. Sequential cleavage of viral S protein by furin and transmembrane serine protease 2 (TMPRSS2) triggers viral entry to release the viral genome into the target cell. Hence, TMPRSS2 and furin are possible drug targets. As type 1 DM exhibits a Th1-driven autoimmune process, the relatively lower mortality of COVID-19 in type 1 DM compared to type 2 DM might be attributed to an imbalance between Th1 and Th2 immunity. The anti-inflammatory effects of dipeptidyl peptidase-4 inhibitor may benefit patients with DM and COVID-19. The potential protective effects of sodium–glucose cotransporter-2 inhibitor (SGLT2i), including reduction in lactate level, prevention of lowering of cytosolic pH and reduction in pro-inflammatory cytokine levels may justify the provision of SGLT2i to patients with DM and mild or asymptomatic COVID-19. For patients with DM and COVID-19 who require hospitalization, insulin-based treatment is recommended with cessation of metformin and SGLT2i. Further evidence from randomized or case–control clinical trials is necessary to elucidate the effectiveness and pitfalls of different types of medication for DM. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

14 pages, 4140 KiB  
Review
Inhibiting the NLRP3 Inflammasome
by Lina Y. El-Sharkawy, David Brough and Sally Freeman
Molecules 2020, 25(23), 5533; https://doi.org/10.3390/molecules25235533 - 25 Nov 2020
Cited by 88 | Viewed by 13257
Abstract
Inflammasomes are protein complexes which are important in several inflammatory diseases. Inflammasomes form part of the innate immune system that triggers the activation of inflammatory cytokines interleukin (IL)-1β and IL-18. The inflammasome most studied in sterile inflammation and non-communicable disease is the NLRP3 [...] Read more.
Inflammasomes are protein complexes which are important in several inflammatory diseases. Inflammasomes form part of the innate immune system that triggers the activation of inflammatory cytokines interleukin (IL)-1β and IL-18. The inflammasome most studied in sterile inflammation and non-communicable disease is the NLRP3 inflammasome. Upon activation by diverse pathogen or disease associated signals, NLRP3 nucleates the oligomerization of an adaptor protein ASC forming a platform (the inflammasome) for the recruitment and activation of the protease caspase-1. Active caspase-1 catalyzes the processing and release of IL-1β and IL-18, and via cleavage of the pore forming protein gasdermin D can drive pyroptotic cell death. This review focuses on the structural basis and mechanism for NLRP3 inflammasome signaling in the context of drug design, providing chemical structures, activities, and clinical potential of direct inflammasome inhibitors. A cryo-EM structure of NLRP3 bound to NEK7 protein provides structural insight and aids in the discovery of novel NLRP3 inhibitors utilizing ligand-based or structure-based approaches. Full article
(This article belongs to the Special Issue Inflammasome Inhibitors)
Show Figures

Graphical abstract

13 pages, 1897 KiB  
Article
Pollen Proteases Play Multiple Roles in Allergic Disorders
by Ricardo Gaspar, Mafalda Ramos de Matos, Luísa Cortes, Isabel Nunes-Correia, Ana Todo-Bom, Euclides Pires and Paula Veríssimo
Int. J. Mol. Sci. 2020, 21(10), 3578; https://doi.org/10.3390/ijms21103578 - 19 May 2020
Cited by 36 | Viewed by 3665
Abstract
Allergic diseases are a major health concern worldwide. Pollens are important triggers for allergic rhinitis, conjunctivitis and asthma. Proteases released upon pollen grain hydration appear to play a major role in the typical immunological and inflammatory responses that occur in patients with allergic [...] Read more.
Allergic diseases are a major health concern worldwide. Pollens are important triggers for allergic rhinitis, conjunctivitis and asthma. Proteases released upon pollen grain hydration appear to play a major role in the typical immunological and inflammatory responses that occur in patients with allergic disorders. In this study, we aimed to identify specific proteolytic activity in a set of pollens with diverse allergenic potential. Diffusates from Chenopodium album, Plantago lanceolata and Eucalyptus globulus were added to a confluent monolayer of Calu-3 cells grown in an air-liquid interface system. We identified serine proteases and metalloproteinases in all pollen diffusates investigated. Proteases found in these pollen diffusates were shown to compromise the integrity of the lung epithelial barrier by disrupting transmembrane adhesion proteins E-cadherin, claudin-1 and Occludin, as well as, the cytosolic complex zonula occludens-1 (ZO-1) resulting in a time-dependent increase in transepithelial permeability. Tight junction disruption and increased transepithelial permeability facilitates allergen exposure to epithelial sub-layers contributing to the sensitization to a wide range of allergens. These pollen extracts also induced an increase in the release of interleukin 6 (IL-6) and interleukin 8 (IL-8) cytokines measured by flow cytometry possibly as a result of the activation of protease-activated receptors 2 (PAR-2). Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

Back to TopTop