Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,258)

Search Parameters:
Keywords = productive behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 730 KB  
Article
She Wants Safety, He Wants Speed: A Mixed-Methods Study on Gender Differences in EV Consumer Behavior
by Qi Zhu and Qian Bao
Systems 2025, 13(10), 869; https://doi.org/10.3390/systems13100869 - 3 Oct 2025
Abstract
Against the backdrop of the rapid proliferation of electric vehicles (EVs), gender-oriented behavioral mechanisms remain underexplored, particularly the unique pathways of female users in usage experience, value assessment, and purchase decision-making. This study constructs an integrated framework based on the Stimulus–Organism–Response (SOR) model, [...] Read more.
Against the backdrop of the rapid proliferation of electric vehicles (EVs), gender-oriented behavioral mechanisms remain underexplored, particularly the unique pathways of female users in usage experience, value assessment, and purchase decision-making. This study constructs an integrated framework based on the Stimulus–Organism–Response (SOR) model, leveraging social media big data to analyze in depth how gender differences influence EV users’ purchase intentions. By integrating natural language processing techniques, grounded theory coding, and structural equation modeling (SEM), this study models and analyzes 272,083 pieces of user-generated content (UGC) from Chinese social media platforms, identifying key functional and emotional factors shaping female users’ perceptions and attitudes. The results reveal that esthetic value, safety, and intelligent features more strongly drive emotional responses among female users’ decisions through functional cognition, with gender significantly moderating the pathways from perceived attributes to emotional resonance and cognitive evaluation. This study further confirms the dual mediating roles of functional cognition and emotional experience and identifies a masking (suppression) effect for the ‘intelligent perception’ variable. Methodologically, it develops a novel hybrid paradigm that integrates data-driven semantic mining with psychological behavioral modeling, enhancing the ecological validity of consumer behavior research. Practically, the findings provide empirical support for gender-sensitive EV product design, personalized marketing strategies, and community-based service innovations, while also discussing research limitations and proposing future directions for cross-cultural validation and multimodal analysis. Full article
21 pages, 4018 KB  
Article
Bifidobacterium longum P77 and Lactiplantibacillus plantarum P72 and Their Mix—Live or Heat-Treated—Mitigate Sleeplessness and Depression in Mice: Involvement of Serotonergic and GABAergic Systems
by Ji-Su Baek, Xiaoyang Ma, Hee-Seo Park, Dong-Yun Lee and Dong-Hyun Kim
Cells 2025, 14(19), 1547; https://doi.org/10.3390/cells14191547 - 3 Oct 2025
Abstract
Sleeplessness (insomnia) is a significant symptom associated with stress-induced depression/anxiety. In the present study, we selected Bifidobacterium longum P77, which increased serotonin production in corticosterone-stimulated SH-SY5Y cells, from the fecal bacteria collection of healthy volunteers and examined the effects of B. longum on [...] Read more.
Sleeplessness (insomnia) is a significant symptom associated with stress-induced depression/anxiety. In the present study, we selected Bifidobacterium longum P77, which increased serotonin production in corticosterone-stimulated SH-SY5Y cells, from the fecal bacteria collection of healthy volunteers and examined the effects of B. longum on depression, anxiety, and sleeplessness induced by immobilization stress or by transplantation of cultured fecal microbiota (cFM) from patients with depression. Orally administered B. longum P77 decreased depression/anxiety- and sleeplessness-like behaviors in immobilization stress-exposed mice. B. longum P77 reduced immobilization stress-induced corticosterone, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 expression and the cell population of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)+ in the prefrontal cortex, while the expression levels of immobilization stress-suppressed IL-10, γ-aminobutyric acid (GABA), its receptor GABAARα1, serotonin, and its receptor 5-HT1AR increased. B. longum P77 also alleviated immobilization stress-induced colitis: it decreased TNF-α and IL-6 expression and increased IL-10 expression in the colon. Furthermore, B. longum P77, Lactiplantibacillus plantarum P72, and their combination decreased cFM- or immobilization stress-induced depression-, anxiety-, and sleeplessness-like behaviors. They also decreased cFM-induced, corticosterone, TNF-α, and IL-6 expression levels in the prefrontal cortex and colon, while increasing cFM- or immobilization stress-suppressed GABA, GABAARα1, serotonin, and 5-HT1AR expression levels in the prefrontal cortex. In particular, the combination of B. longum P77 and L. plantarum P72 (P7277) additively or synergistically alleviated depression-, anxiety-, and sleeplessness-like behaviors, along with their associated biomarkers. Heat-killed P7277 also alleviated immobilization stress-induced depression/anxiety- and sleeplessness-like symptoms. These results imply that L. plantarum P72 and/or B. longum P77 can mitigate depression/anxiety and sleeplessness by upregulating GABAergic and serotonergic systems, along with the suppression of NF-κB activation. Full article
Show Figures

Figure 1

23 pages, 2885 KB  
Article
Parkia platycephala Pods Modulate Eimeria spp. Parasite Load and Enhance Productive Performance in Naturally Infected Lambs
by Thalia Caldas da Silva, Gabrielle de Melo Oliveira, Osmar Macêdo Fortaleza Neto, Maycon Rodrigo de Souza Diniz, Joana Kellany Gonçalves de Andrade, José Gracione do Nascimento Souza Filho, Janaína Marques do Nascimento, Sara Silva Reis, Michelle de Oliveira Maia Parente, Arlan Araújo Rodrigues, Anderson de Moura Zanine, Henrique Nunes Parente and Ivo Alexandre Leme da Cunha
Animals 2025, 15(19), 2896; https://doi.org/10.3390/ani15192896 - 3 Oct 2025
Abstract
Coccidiosis represents a major constraint to sheep productivity worldwide, with increasing concerns regarding anticoccidial resistance and growing interest in reducing dependency on conventional synthetic anticoccidials. This investigation evaluated the anticoccidial properties of faveira pods (Parkia platycephala pod—PpP) and their influence on productive [...] Read more.
Coccidiosis represents a major constraint to sheep productivity worldwide, with increasing concerns regarding anticoccidial resistance and growing interest in reducing dependency on conventional synthetic anticoccidials. This investigation evaluated the anticoccidial properties of faveira pods (Parkia platycephala pod—PpP) and their influence on productive performance in naturally infected lambs. Eighteen uncastrated Dorper × Santa Inês crossbred males (20.0 ± 2.5 kg, 5 months) were randomly allocated to three groups: G1 (0% PpP; n = 6), G2 (100% PpP replacing roughage, 30.0% of total diet; n = 6), and the control group (0% PpP plus 20 mg/kg toltrazuril; n = 5). Parasitological assessments, productive performance, and behavioral parameters were monitored over 45 days using oocyst counts, morphometric analysis, digestibility trials, and biometric measurements. Nine Eimeria species were identified, with E. crandallis, E. parva, and E. bakuensis representing 53.5% of total oocyst shedding. Group G2 demonstrated a numerical 8.5% reduction in parasite load compared to G1 (p = 0.42), while toltrazuril achieved 36.6% efficacy (p < 0.05). Species-specific effects were significant for E. crandallis, E. parva, and E. ovinoidalis (p < 0.01). A robust correlation emerged between parasite load and water consumption (r = 0.652, p = 0.0045), establishing a novel behavioral biomarker for coccidiosis monitoring. Environmental oocyst elimination decreased by 43.4% in the P. platycephala group. These findings demonstrate that PpPs possess moderate anticoccidial properties, offering a sustainable complementary strategy for integrated coccidiosis management while contributing to environmental sustainability. Full article
(This article belongs to the Special Issue Coccidian Parasites: Epidemiology, Control and Prevention Strategies)
Show Figures

Figure 1

13 pages, 4976 KB  
Article
Nanostructured CeO2-C Derived from Ce-BDC Precursors for Room-Temperature Ammonia Sensing
by Liang Wang, Manyi Liu, Shan Ren, Xiankang Zhong, Bofeng Bai, Shouning Chai, Chi He and Xinzhe Li
Chemosensors 2025, 13(10), 362; https://doi.org/10.3390/chemosensors13100362 - 3 Oct 2025
Abstract
The prompt and reliable detection of NH3 leakage at room temperature (RT) is considered important for safety assurance and sustainable production. Although chemiresistive NH3 sensors feature low cost and structural simplicity, their practical application is hindered by high operating temperatures and [...] Read more.
The prompt and reliable detection of NH3 leakage at room temperature (RT) is considered important for safety assurance and sustainable production. Although chemiresistive NH3 sensors feature low cost and structural simplicity, their practical application is hindered by high operating temperatures and inadequate selectivity. Metal–organic frameworks (MOFs) and their derivatives offer a promising approach to address these limitations. In this work, Ce-BDC precursors with tunable particle sizes and crystallinity were synthesized by adjusting the raw material concentration. Controlled pyrolysis yielded a series of CeO2-C-X (X = 0.5, 1, 1.5, 2) materials with nanosized particles. Among them, the CeO2-C-1 sensor delivered a high response of 82% toward NH3 under 40% relative humidity at RT. Moreover, it possessed excellent selectivity, repeatability, and rapid response-recovery behavior compared with the other samples. CeO2-C-1 also remained stable under varying oxygen and humidity conditions, demonstrating high applicability. The superior sensing properties may be attributed to its high specific surface area and optimized mesoporous structure, which facilitated efficient gas adsorption and reaction. These findings demonstrated that precise control of MOF precursors and the structure in CeO2 nanomaterials was critical for achieving high-performance gas sensing and established Ce-MOF-derived CeO2 as a promising sensing material for NH3 detection at RT. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors)
Show Figures

Figure 1

18 pages, 602 KB  
Article
Mixed Management in Growing and Finishing Pigs: Impacts on Social Behavior and Judgment Bias
by Angela Cristina da Fonseca de Oliveira, Leandro Batista Costa, Saulo Henrique Weber and Antoni Dalmau
Animals 2025, 15(19), 2893; https://doi.org/10.3390/ani15192893 - 3 Oct 2025
Abstract
Intensive pig production practices may shape cognition and behavior. We evaluated whether repeated regrouping (mixing) and gender (gilts vs. barrows) affect social interactions, fear-related responses, and affective state. A total of 96 growing pigs were separated into two treatments: control—pigs that were mixed [...] Read more.
Intensive pig production practices may shape cognition and behavior. We evaluated whether repeated regrouping (mixing) and gender (gilts vs. barrows) affect social interactions, fear-related responses, and affective state. A total of 96 growing pigs were separated into two treatments: control—pigs that were mixed once during the growing–finishing period; and social stress—pigs that were mixed thrice during the growing–finishing period. Social and non-social behaviors were directly noted, and four behavioral tests were conducted: open field, novel object, couples, and judgment bias tests. The statistical analysis compared gender and treatment, and p-values ≤ 0.05 were considered significant. Females stayed longer in the test pen entrance area during the novel object test and barrows spent more time at the feeder and defecated more during the couples’ test. With regard to the judgment bias test, females took longer to be considered trained in the discriminatory learning task and presented a “pessimistic judgment” during the ambiguous cue. Our results suggest that gender influences judgment bias in pigs and can influence social and non-social behavior, which may reflect a negative affective state with implications for their welfare and management. Full article
25 pages, 9362 KB  
Review
In Situ Raman Spectroscopy Reveals Structural Evolution and Key Intermediates on Cu-Based Catalysts for Electrochemical CO2 Reduction
by Jinchao Zhang, Honglin Gao, Zhen Wang, Haiyang Gao, Li Che, Kunqi Xiao and Aiyi Dong
Nanomaterials 2025, 15(19), 1517; https://doi.org/10.3390/nano15191517 - 3 Oct 2025
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is a key technology for achieving carbon neutrality and efficient utilization of renewable energy, capable of converting CO2 into high-value-added carbon-based fuels and chemicals. Copper (Cu)-based catalysts have attracted significant attention due to their [...] Read more.
Electrochemical CO2 reduction reaction (CO2RR) is a key technology for achieving carbon neutrality and efficient utilization of renewable energy, capable of converting CO2 into high-value-added carbon-based fuels and chemicals. Copper (Cu)-based catalysts have attracted significant attention due to their unique performance in generating multi-carbon (C2+) products such as ethylene and ethanol; however, there are still many controversies regarding their complex reaction mechanisms, active sites, and the dynamic evolution of intermediates. In situ Raman spectroscopy, with its high surface sensitivity, applicability in aqueous environments, and precise detection of molecular vibration modes, has become a powerful tool for studying the structural evolution of Cu catalysts and key reaction intermediates during CO2RR. This article reviews the principles of electrochemical in situ Raman spectroscopy and its latest developments in the study of CO2RR on Cu-based catalysts, focusing on its applications in monitoring the dynamic structural changes of the catalyst surface (such as Cu+, Cu0, and Cu2+ oxide species) and identifying key reaction intermediates (such as *CO, *OCCO(*O=C-C=O), *COOH, etc.). Numerous studies have shown that Cu-based oxide precursors undergo rapid reduction and surface reconstruction under CO2RR conditions, resulting in metallic Cu nanoclusters with unique crystal facets and particle size distributions. These oxide-derived active sites are considered crucial for achieving high selectivity toward C2+ products. Time-resolved Raman spectroscopy and surface-enhanced Raman scattering (SERS) techniques have further revealed the dynamic characteristics of local pH changes at the electrode/electrolyte interface and the adsorption behavior of intermediates, providing molecular-level insights into the mechanisms of selectivity control in CO2RR. However, technical challenges such as weak signal intensity, laser-induced damage, and background fluorescence interference, and opportunities such as coupling high-precision confocal Raman technology with in situ X-ray absorption spectroscopy or synchrotron radiation Fourier transform infrared spectroscopy in researching the mechanisms of CO2RR are also put forward. Full article
Show Figures

Figure 1

26 pages, 11614 KB  
Article
Layer Thickness Impact on Shock-Accelerated Interfacial Instabilities in Single-Mode Stratifications
by Salman Saud Alsaeed, Satyvir Singh and Nouf A. Alrubea
Appl. Sci. 2025, 15(19), 10687; https://doi.org/10.3390/app151910687 - 3 Oct 2025
Abstract
This study investigates the influence of heavy-layer thickness on shock-accelerated interfacial instabilities in single-mode stratifications using high-order discontinuous Galerkin simulations at a fixed shock Mach number (Ms=1.22). By systematically varying the layer thickness, we quantify how acoustic transit [...] Read more.
This study investigates the influence of heavy-layer thickness on shock-accelerated interfacial instabilities in single-mode stratifications using high-order discontinuous Galerkin simulations at a fixed shock Mach number (Ms=1.22). By systematically varying the layer thickness, we quantify how acoustic transit time, shock attenuation, and phase synchronization modulate vorticity deposition, circulation growth, and interface deformation. The results show that thin layers (d=2.5–5 mm) generate strong and early baroclinic vorticity due to frequent reverberations, leading to rapid circulation growth, vigorous Kelvin–Helmholtz roll-up, and early jet pairing. In contrast, thick layers (d=20–40 mm) attenuate and dephase shock returns, producing weaker baroclinic reinforcement, delayed shear-layer growth, and smoother interfaces with reduced small-scale activity, while the intermediate case (d=10 mm) exhibits transitional behavior. Integral diagnostics reveal that thin layers amplify dilatational, baroclinic, and viscous vorticity production; sustain stronger circulation and enstrophy growth; and transfer bulk kinetic energy more efficiently into interface deformation and small-scale mixing. Full article
Show Figures

Figure 1

12 pages, 243 KB  
Article
“You Only Buy What You Love”: Understanding Impulse Buying Among College Students Through Values, Emotion, and Digital Immersion
by Yuanbo Qi
J. Theor. Appl. Electron. Commer. Res. 2025, 20(4), 271; https://doi.org/10.3390/jtaer20040271 - 3 Oct 2025
Abstract
Impulsive purchasing behavior among university students has gained increased attention in the context of digital consumption settings; however, much of the existing research is product-specific and quantitative, leaving the subjective nuances of this phenomenon underexplored. This study investigates how college students perceive and [...] Read more.
Impulsive purchasing behavior among university students has gained increased attention in the context of digital consumption settings; however, much of the existing research is product-specific and quantitative, leaving the subjective nuances of this phenomenon underexplored. This study investigates how college students perceive and explain their impulsive purchase behavior across various product categories and platforms, using qualitative data from focus groups (n = 72). By revealing the prevalence of key patterns—interest-aligned, emotional relief, hedonistic lifestyle, social influence, inquisitive reviewer, presentation appeal, and controlled purchase—this research uncovers the underlying identity-affirming practices, internal emotional negotiations, and external sociotechnical cues that shape such behavior. Ultimately, it reframes impulsive buying as a socially embedded, identity-driven act rather than an act of irrationality. These findings advance our understanding of consumer psychology by emphasizing the lived experiences and self-construction processes of young consumers navigating media-saturated, algorithmically curated purchasing environments. Full article
30 pages, 2239 KB  
Article
Valorization of Hazelnut (Corylus avellana L.) Skin By-Product as a Multifunctional Ingredient for Cosmetic Emulsions
by Teresa Mencherini, Tiziana Esposito, Francesca Sansone, Daniela Eletto, Martina Pannetta, Oihana Gordobil, Anna Lisa Piccinelli, Carlo Ferniani, Giulia Auriemma, Luca Rastrelli and Rita Patrizia Aquino
Antioxidants 2025, 14(10), 1199; https://doi.org/10.3390/antiox14101199 - 2 Oct 2025
Abstract
Roasted hazelnut skins (RHSs), generated as by-products of industrial hazelnut processing, were extracted by pressurized liquid extraction to yield a hydroalcoholic extract (RHS-H). The extract was rich in polyphenols (308.4 ± 4.6 mg GAE/g) and proanthocyanidins (169.3 ± 10 mg CE/g) and showed [...] Read more.
Roasted hazelnut skins (RHSs), generated as by-products of industrial hazelnut processing, were extracted by pressurized liquid extraction to yield a hydroalcoholic extract (RHS-H). The extract was rich in polyphenols (308.4 ± 4.6 mg GAE/g) and proanthocyanidins (169.3 ± 10 mg CE/g) and showed strong antioxidant activity (DPPH EC50 = 5.08 ± 1.08 µg/mL; TEAC = 2.82 ± 0.03 mM Trolox/mg) together with antimicrobial effects against Staphylococcus aureus and Staphylococcus epidermidis. RHS-H also enhanced the UV absorbance of synthetic UV filters. When incorporated into oil-in-water (O/W) cosmetic emulsions at low concentrations (0.2–2% w/w), RHS-H did not affect physicochemical stability: formulations maintained acceptable organoleptic properties, dermocompatible pH (4.7–5.5), electrostatic stability (ζ-potential ranging from –57 to –60 mV), and rheological behavior. Functionally, RHS-H increased the antioxidant activity of emulsions (radical scavenging > 80% vs. 52% in the blank), ensured microbial protection in challenge tests, and enhanced SPF by 9.4% at 0.2% w/w, with further improvements at higher concentrations, reaching broad-spectrum photoprotection (critical wavelength > 370 nm). Overall, RHS-H represents a natural multifunctional ingredient with antioxidant, preservative, and photoprotective properties, providing a sustainable strategy to upcycle hazelnut processing waste and reduce reliance on synthetic additives in cosmetic formulations. Full article
(This article belongs to the Special Issue Natural Antioxidants for Cosmetic Applications)
20 pages, 345 KB  
Article
A Novel Approach to Polynomial Approximation in Multidimensional Cylindrical Domains via Generalized Kronecker Product Bases
by Mohra Zayed
Axioms 2025, 14(10), 750; https://doi.org/10.3390/axioms14100750 - 2 Oct 2025
Abstract
The Kronecker product has been commonly seen in various scientific fields to formulate higher-dimensional spaces from lower-dimensional ones. This paper presents a generalization of the Cannon–Kronecker product bases by introducing generalized Kronecker product bases of polynomials within an analytic framework. It investigates the [...] Read more.
The Kronecker product has been commonly seen in various scientific fields to formulate higher-dimensional spaces from lower-dimensional ones. This paper presents a generalization of the Cannon–Kronecker product bases by introducing generalized Kronecker product bases of polynomials within an analytic framework. It investigates the convergence behavior of infinite series formed by these generalized products in various polycylindrical domains, including both open and closed configurations. The paper also delves into essential analytic properties such as order, type, and the Tρ-property to analyze the growth and structural characteristics of these bases. Moreover, the theoretical insights are applied to a range of classical special functions, notably Bernoulli, Euler, Gontcharoff, Bessel, and Chebyshev polynomials. Full article
31 pages, 399 KB  
Article
Weakly B-Symmetric Warped Product Manifolds with Applications
by Bang-Yen Chen, Sameh Shenawy, Uday Chand De, Safaa Ahmed and Hanan Alohali
Axioms 2025, 14(10), 749; https://doi.org/10.3390/axioms14100749 - 2 Oct 2025
Abstract
This work presents a comprehensive study of weakly B-symmetric warped product manifolds (WBS)n, a natural extension of several classical curvature-restricted geometries including B-flat, B-parallel, and B-recurrent manifolds. We begin by formulating the fundamental [...] Read more.
This work presents a comprehensive study of weakly B-symmetric warped product manifolds (WBS)n, a natural extension of several classical curvature-restricted geometries including B-flat, B-parallel, and B-recurrent manifolds. We begin by formulating the fundamental properties of the B-tensor B(X,Y)=aS(X,Y)+brg(X,Y), where S is the Ricci tensor, r the scalar curvature, and a,b are smooth non-vanishing functions. The warped product structure is then exploited to obtain explicit curvature identities for base and fiber manifolds under various geometric constraints. Detailed characterizations are established for Einstein conditions, Codazzi-type tensors, cyclic parallel tensors, and the behavior of geodesic vector fields. The weakly B-symmetric condition is analyzed through all possible projections of vector fields, leading to sharp criteria describing the interaction between the warping function and curvature. Several applications are discussed in the context of Lorentzian geometry, including perfect fluid and generalized Robertson–Walker spacetimes in general relativity. These results not only unify different curvature-restricted frameworks but also reveal new geometric and physical implications of warped product manifolds endowed with weak B-symmetry. Full article
(This article belongs to the Section Mathematical Physics)
16 pages, 2575 KB  
Article
Release and Purification of Poly(3-Hydroxybutyrate) P(3HB) via the Combined Use of an Autolytic Strain of Azotobacter vinelandii OP-PhbP3+ and Non-Halogenated Solvents
by Joshua Valencia, Daniel Segura, Claudia Aguirre-Zapata, Enrique Galindo and Carlos Peña
Fermentation 2025, 11(10), 571; https://doi.org/10.3390/fermentation11100571 - 2 Oct 2025
Abstract
P(3HB) is a biodegradable and biocompatible polymer, which can replace petroleum-derived plastics. Previous studies have shown that Azotobacter vinelandii strain OP-PhbP3+, which overexpresses the phasin protein PhbP3, produces high concentrations of P(3HB) and undergoes early autolysis, facilitating polymer release. The aim [...] Read more.
P(3HB) is a biodegradable and biocompatible polymer, which can replace petroleum-derived plastics. Previous studies have shown that Azotobacter vinelandii strain OP-PhbP3+, which overexpresses the phasin protein PhbP3, produces high concentrations of P(3HB) and undergoes early autolysis, facilitating polymer release. The aim of the present study was to evaluate the performance of this strain for P(3HB) production in 3 L bioreactors and assess the feasibility of a simplified recovery process. After 36 h of cultivation, rapid cell lysis was observed, resulting in a ~50% decrease in the protein content of the cell dry weight, without reducing P(3HB) concentration, which reached 4.6 g L−1. Flow cytometry analysis revealed significant morphological changes during cultivation, which was consistent with the strain’s lytic behavior. The biomass recovered at 36 h was washed with SDS, obtaining a yield of 92.5% (respect to P(3HB) initial) and a purity of 97.6%. An alternative extraction procedure using the non-halogenated solvent cyclohexanone (CYC) resulted in an even higher yield of 97.8% with a purity of 99.3% of P(3HB). Notably, the weight average molecular weight of the polymer remained stable at 8000 kDa during the entire process. Overall, the combination of PhbP3 over-expression and environmentally friendly solvents, such as CYC, enabled efficient P(3HB) production with high yield and purity while preserving polymer quality. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

15 pages, 2058 KB  
Article
Screening of 31 Lactic Acid Bacteria Strains Identified Levilactobacillus brevis NCTC 13768 as a High-Yield GABA Producer
by Desislava Teneva, Daniela Pencheva, Tsvetanka Teneva-Angelova, Svetla Danova, Nikoleta Atanasova, Lili Dobreva, Manol Ognyanov, Ani Petrova, Aleksandar Slavchev, Vasil Georgiev and Petko Denev
Appl. Sci. 2025, 15(19), 10670; https://doi.org/10.3390/app151910670 - 2 Oct 2025
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the vertebrate central nervous system, known for its role in promoting sleep, reducing anxiety, regulating blood pressure, and modulating stress, cognition, and behavior. Microbial fermentation offers an effective method for GABA production, with certain [...] Read more.
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the vertebrate central nervous system, known for its role in promoting sleep, reducing anxiety, regulating blood pressure, and modulating stress, cognition, and behavior. Microbial fermentation offers an effective method for GABA production, with certain lactic acid bacteria (LAB) strains recognized as efficient producers. This study assessed the GABA-producing potential of 31 LAB strains, including isolates from traditional Bulgarian foods and plants. The strains were cultivated in an MRS medium supplemented with 1% monosodium glutamate (MSG), and GABA production was quantified using HPLC after derivatization with dansyl chloride. Most strains produced between 200 and 300 mg/L of GABA. However, Levilactobacillus brevis NCTC 13768 showed much higher productivity, reaching 3830.7 mg/L. To further evaluate its capacity, L. brevis NCTC 13768 was cultivated for 168 h in MRS medium with and without MSG. Without MSG, GABA production peaked at 371.0 mg/L during the late exponential phase. In contrast with MSG, GABA levels steadily increased, reaching 3333.6 mg/L after 168 h. RT-qPCR analyses of the glutamic acid decarboxylase (GAD) system showed that the genes of glutamate decarboxylase (gadB), glutamate-GABA antiporter (gadC), and transcriptional regulator (gadR) are significantly overexpressed when the culture reaches the late stationary phase of growth (96 h after the beginning of cultivation). These results identify L. brevis NCTC 13768 as a high-yield GABA producer, with potential applications in the production of fermented functional foods and beverages. Full article
(This article belongs to the Special Issue Application of Natural Components in Food Production, 2nd Edition)
Show Figures

Figure 1

26 pages, 1201 KB  
Review
The Tumor Environment in Peritoneal Carcinomatosis and Malignant Pleural Effusions: Implications for Therapy
by Paige O. Mirsky, Patrick L. Wagner, Maja Mandic-Popov, Vera S. Donnenberg and Albert D. Donnenberg
Cancers 2025, 17(19), 3217; https://doi.org/10.3390/cancers17193217 - 2 Oct 2025
Abstract
Peritoneal carcinomatosis (PC) and malignant pleural effusions (MPE) are two common complications of cancers metastatic to the respective body cavities. A PC diagnosis indicates metastasis to the tissue lining the abdominal cavity and is most common in patients with gastrointestinal and gynecological cancers. [...] Read more.
Peritoneal carcinomatosis (PC) and malignant pleural effusions (MPE) are two common complications of cancers metastatic to the respective body cavities. A PC diagnosis indicates metastasis to the tissue lining the abdominal cavity and is most common in patients with gastrointestinal and gynecological cancers. It is often accompanied by ascites, an accumulation of serous fluid in the abdomen. MPE presents as the accumulation of fluid in the space between the lungs and chest wall. It is a common terminal event in patients diagnosed with breast cancer, lung cancer, lymphoma, and mesothelial cancers, and less commonly, in a wide variety of other epithelial cancers. Due to the aggressive nature of cavitary tumors, the outcome of current treatments for both PC and MPE remains bleak. Although PC and MPE are characteristically affected by different sets of primary tumors (lung/breast/mesothelioma for MPE and gynecologic/gastrointestinal for PC), their environments share common cytokines and cellular components. Owing to the unique cytokine and chemokine content, this environment promotes aggressive tumor behavior and paradoxically both recruits and suppresses central memory and effector memory T cells. The cellular and secretomic complexity of the cavitary tumor environment renders most currently available therapeutics ineffective but also invites approaches that leverage the robust T-cell infiltrate while addressing the causes of local suppression of anti-tumor immunity. Interactions between the heterogeneous components of the tumor environment are an area of active research. We highlight the roles of the immune cell infiltrate, stromal cells, and tumor cells, and the soluble products that they secrete into their environment. A more comprehensive understanding of the cavitary tumor environment can be expected to lead to better immunotherapeutic approaches to these devastating conditions. Full article
(This article belongs to the Special Issue Recent Advances in Peritoneal Carcinomatosis)
Show Figures

Figure 1

15 pages, 1556 KB  
Article
Physicochemical Characterization of Soluble and Insoluble Fibers from Berry Pomaces
by Jolita Jagelavičiūtė, Simona Šimkutė, Aurelija Kairė, Gabrielė Kaminskytė, Loreta Bašinskienė and Dalia Čižeikienė
Gels 2025, 11(10), 796; https://doi.org/10.3390/gels11100796 - 2 Oct 2025
Abstract
Berry pomace is a valuable source of dietary fiber (DF) with promising applications in functional food development. This study aimed to evaluate and compare the technological and rheological properties of soluble (SDF) and insoluble (IDF) fiber fractions isolated from cranberry, black currant, lingonberry, [...] Read more.
Berry pomace is a valuable source of dietary fiber (DF) with promising applications in functional food development. This study aimed to evaluate and compare the technological and rheological properties of soluble (SDF) and insoluble (IDF) fiber fractions isolated from cranberry, black currant, lingonberry, and sea buckthorn pomace. SDF fractions demonstrated higher water solubility and lower swelling capacity, compared with IDF fractions. Meanwhile, water and oil retention capacities depended on fiber type and the sources of pomace. Fractionation notably affected color parameters, with SDFs generally being lighter. Rheological analysis revealed pseudoplastic, shear-thinning behavior in all SDF samples, with viscosity dependent on both pH and shear rate. In particular, the black currant SDF demonstrated higher yield stress compared to other SDFs, suggesting enhanced resistance to deformation and superior structural stability under low shear conditions. The consistency coefficient varied across samples, indicating differences in gel-forming potential. These findings highlight the importance of berry source and fiber fraction in determining functionality. The distinct hydration, binding, and rheological properties suggest that both SDF and IDF from berry pomace can be strategically applied as thickeners, stabilizers, or texture enhancers in food systems. This study supports the valorization of berry by-products as sustainable and functional ingredients in the formulation of fiber-enriched foods. Full article
(This article belongs to the Special Issue Food Hydrogels: Synthesis, Characterization and Applications)
Show Figures

Figure 1

Back to TopTop