Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = premultiplied spectra

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4750 KiB  
Article
Characteristics of Very Large-Scale Motions in Rough-Bed Open-Channel Flows
by Ying Shen, Shengfa Yang and Jie Liu
Water 2023, 15(7), 1433; https://doi.org/10.3390/w15071433 - 6 Apr 2023
Cited by 5 | Viewed by 2236
Abstract
Rough-bed open-channel flows (OCFs) are ubiquitous in rivers and canals. However, the scaling and energy contents of very-large-scale motions (VLSMs) in such flows remain unclear. In this study, the above characteristics of VLSMs are experimentally investigated with the measurement of particle imaging velocimetry [...] Read more.
Rough-bed open-channel flows (OCFs) are ubiquitous in rivers and canals. However, the scaling and energy contents of very-large-scale motions (VLSMs) in such flows remain unclear. In this study, the above characteristics of VLSMs are experimentally investigated with the measurement of particle imaging velocimetry (PIV). VLSM wavelengths obtained via premultiplied spectra analysis were consistent with previously reported values. Comparisons with these studies ruled out the role of relative submergence, and suggested that the channel aspect ratio is key to controlling the VLSM wavelengths in OCFs. VLSMs carry approximately 60% of the turbulence kinetic energy (TKE) and 38–50% of the Reynolds stress in rough-bed OCFs. The VLSM-related TKE fraction in the 0.1–0.5H range increased with increasing friction Reynolds number, while variation in the Reynolds shear stress did not exhibit any explicit trend. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

26 pages, 7558 KiB  
Article
Numerical Investigation of Very-Large-Scale Motions in a Turbulent Boundary Layer for Different Roughness
by Hehe Ren, Shujin Laima and Hui Li
Energies 2020, 13(3), 659; https://doi.org/10.3390/en13030659 - 4 Feb 2020
Cited by 5 | Viewed by 2737
Abstract
Wall-model large eddy simulations (WMLES) are conducted to investigate the spatial features of large-scale and very-large-scale motions (LSMs and VLSMs) in turbulent boundary flow in different surface roughnesses at a very high Reynolds number, O (106–107). The results of [...] Read more.
Wall-model large eddy simulations (WMLES) are conducted to investigate the spatial features of large-scale and very-large-scale motions (LSMs and VLSMs) in turbulent boundary flow in different surface roughnesses at a very high Reynolds number, O (106–107). The results of the simulation of nearly smooth cases display good agreement with field observations and experimental data, both dimensioned using inner and outer variables. Using pre-multiplied spectral analysis, the size of VLSMs can be reduced or even disappear with increasing roughness, which indirectly supports the concept that the bottom-up mechanism is one of the origins of VLSMs. With increases in height, the power of pre-multiplied spectra at both high and low wavenumber regions decreases, which is consistent with most observational and experimental results. Furthermore, we find that the change in the spectrum scaling law from −1 to −5/3 is a gradual process. Due to the limitations of the computational domain and coarse grid that were adopted, some VLSMs and small-scale turbulence are truncated. However, the size of LSMs is fully accounted for. From the perspective of the spatial correlation of the flow field, the structural characteristics of VLSMs under various surface roughnesses, including three-dimensional length scales and inclination angles, are obtained intuitively, and the conclusions are found to be in good agreement with the velocity spectra. Finally, the generation, development and extinction of three-dimensional VLSMs are analyzed by instantaneous flow and vorticity field, and it shows that the instantaneous flow field gives evidence of low-speed streamwise-elongated flow structures with negative streamwise velocity fluctuation component, and which are flanked on each side by similarly high-speed streamwise-elongated flow structures. Moreover, each of the low-speed streamwise-elongated flow structure lies beneath many vortices. Full article
(This article belongs to the Special Issue Engineering Fluid Dynamics 2019-2020)
Show Figures

Figure 1

Back to TopTop