Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = premature stop codon (PMSC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1535 KiB  
Article
Exploratory Genomic Marker Analysis of Virulence Patterns in Listeria monocytogenes Human and Food Isolates
by Valeria Russini, Maria Laura De Marchis, Cinzia Sampieri, Cinzia Onorati, Piero Zucchitta, Paola De Santis, Bianca Maria Varcasia, Laura De Santis, Alexandra Chiaverini, Antonietta Gattuso, Annarita Vestri, Laura Gasperetti, Roberto Condoleo, Luigi Palla and Teresa Bossù
Foods 2025, 14(10), 1669; https://doi.org/10.3390/foods14101669 - 9 May 2025
Viewed by 467
Abstract
Listeria monocytogenes causes listeriosis, a severe foodborne disease with high mortality. Contamination with it poses significant risks to food safety and public health. Notably, genetic characteristic differences exist between strains causing human infections and those found in routine food inspections. This study examined [...] Read more.
Listeria monocytogenes causes listeriosis, a severe foodborne disease with high mortality. Contamination with it poses significant risks to food safety and public health. Notably, genetic characteristic differences exist between strains causing human infections and those found in routine food inspections. This study examined the genotypic factors influencing the pathogenicity of L. monocytogenes, focusing on virulence gene profiles and key integrity genes like inlA to explain these divergences. The dataset included 958 strains isolated from human, food, and environmental samples. Whole-genome sequencing identified virulence genes, and principal component analysis (PCA) examined 92 virulence genes and inlA integrity to uncover potentially pathogenic patterns. The results highlight differences in virulence characteristics between strains of different origins. The integrity of inlA and genes such as inlD, inlG, and inlL were pivotal to pathogenicity. Strains with premature stop codons (PMSCs) in inlA, associated with reduced virulence, accounted for a low percentage of human cases but over 30% of food isolates. Sequence types (STs) like ST121, ST580, and ST199 showed unique profiles, while ST9, dominant in food, occasionally caused human cases, posing risks to vulnerable individuals. This research highlights the complexity of the pathogenicity of L. monocytogenes and emphasizes the importance of genomic surveillance for effective risk assessment. Full article
Show Figures

Figure 1

14 pages, 805 KiB  
Article
Listeria monocytogenes Strains Persisting in a Meat Processing Plant in Central Italy: Use of Whole Genome Sequencing and In Vitro Adhesion and Invasion Assays to Decipher Their Virulence Potential
by Giuditta Fiorella Schiavano, Fabrizia Guidi, Francesco Pomilio, Giorgio Brandi, Romolo Salini, Giulia Amagliani, Gabriella Centorotola, Francesco Palma, Martina Felici, Cinzia Lorenzetti and Giuliana Blasi
Microorganisms 2023, 11(7), 1659; https://doi.org/10.3390/microorganisms11071659 - 26 Jun 2023
Cited by 6 | Viewed by 2360
Abstract
In this study, we used both a WGS and an in vitro approach to study the virulence potential of nine Listeria monocytogenes (Lm) strains belonging to genetic clusters persisting in a meat processing plant in Central Italy. The studied clusters belonged [...] Read more.
In this study, we used both a WGS and an in vitro approach to study the virulence potential of nine Listeria monocytogenes (Lm) strains belonging to genetic clusters persisting in a meat processing plant in Central Italy. The studied clusters belonged to CC1-ST1, CC9-ST9, and CC218-ST2801. All the CC1 and CC218 strains presented the same accessory virulence genes (LIPI-3, gltA, gltB, and aut_IVb). CC1 and CC9 strains presented a gene profile similarity of 22.6% as well as CC9 and CC218 isolates. CC1 and CC218 showed a similarity of 45.2% of the same virulence profile. The hypervirulent strains of lineage I (CC1 and CC218) presented a greater ability to adhere and invade Caco-2 cells than hypovirulent ones (CC9). CC1 strains were significantly more adhesive and invasive compared with CC9 and CC218 strains, although these last CCs presented the same accessory virulence genes. No statistically significant difference was found comparing CC218 with CC9 strains. This study provided for the first time data on the in vitro adhesiveness and invasiveness of CC218-ST2801 and added more data on the virulence characteristics of CC1 and CC9. What we observed confirmed that the ability of Lm to adhere to and invade human cells in vitro is not always decipherable from its virulence gene profile. Full article
(This article belongs to the Special Issue Toward a Better Understanding of Listeria monocytogenes Virulence)
Show Figures

Figure 1

16 pages, 1980 KiB  
Article
Evaluation of the Virulence Potential of Listeria monocytogenes through the Characterization of the Truncated Forms of Internalin A
by Giulia Magagna, Maria Gori, Valeria Russini, Veronica De Angelis, Elisa Spinelli, Virginia Filipello, Vito Massimo Tranquillo, Maria Laura De Marchis, Teresa Bossù, Clara Fappani, Elisabetta Tanzi and Guido Finazzi
Int. J. Mol. Sci. 2023, 24(12), 10141; https://doi.org/10.3390/ijms241210141 - 14 Jun 2023
Cited by 10 | Viewed by 2188
Abstract
Listeria monocytogenes is a widespread Gram-positive pathogenic bacterium that causes listeriosis, a rather rare but severe foodborne disease. Pregnant women, infants, the elderly, and immunocompromised individuals are considered particularly at risk. L. monocytogenes can contaminate food and food-processing environments. In particular, ready-to-eat (RTE) [...] Read more.
Listeria monocytogenes is a widespread Gram-positive pathogenic bacterium that causes listeriosis, a rather rare but severe foodborne disease. Pregnant women, infants, the elderly, and immunocompromised individuals are considered particularly at risk. L. monocytogenes can contaminate food and food-processing environments. In particular, ready-to-eat (RTE) products are the most common source associated with listeriosis. L. monocytogenes virulence factors include internalin A (InlA), a surface protein known to facilitate bacterial uptake by human intestinal epithelial cells that express the E-cadherin receptor. Previous studies have demonstrated that the presence of premature stop codon (PMSC) mutations naturally occurring in inlA lead to the production of a truncated protein correlated with attenuate virulence. In this study, 849 L. monocytogenes isolates, collected from food, food-processing plants, and clinical cases in Italy, were typed and analyzed for the presence of PMSCs in the inlA gene using Sanger sequencing or whole-genome sequencing (WGS). PMSC mutations were found in 27% of the isolates, predominantly in those belonging to hypovirulent clones (ST9 and ST121). The presence of inlA PMSC mutations in food and environmental isolates was higher than that in clinical isolates. The results reveal the distribution of the virulence potential of L. monocytogenes circulating in Italy and could help to improve risk assessment approaches. Full article
(This article belongs to the Special Issue Application of Advanced Molecular Methods to Study Infections)
Show Figures

Figure 1

8 pages, 1379 KiB  
Brief Report
Newly Designed Primers for the Sequencing of the inlA Gene of Lineage I and II Listeria monocytogenes Isolates
by Giulia Magagna, Guido Finazzi and Virginia Filipello
Int. J. Mol. Sci. 2022, 23(22), 14106; https://doi.org/10.3390/ijms232214106 - 15 Nov 2022
Cited by 3 | Viewed by 1798
Abstract
Listeria monocytogenes is a major human foodborne pathogen responsible for listeriosis. The virulence factor Internalin A (inlA) has a key role in the invasion of L. monocytogenes into the human intestinal epithelium, and the presence of premature stop-codons (PMSC) mutations in the inlA [...] Read more.
Listeria monocytogenes is a major human foodborne pathogen responsible for listeriosis. The virulence factor Internalin A (inlA) has a key role in the invasion of L. monocytogenes into the human intestinal epithelium, and the presence of premature stop-codons (PMSC) mutations in the inlA gene sequence is correlated with attenuated virulence. The inlA sequencing process is carried out by dividing the gene into three sections which are then reassembled to obtain the full gene. The primers available however were only able to entirely amplify the lineage II isolates. In this study, we present a set of new primers which allow inlA sequencing of isolates belonging to both lineages, since lineage I isolates are the ones most frequently associated to clinical cases. Using newly designed primers, we assessed the presence of inlA PMSCs in food, food processing environments and clinical isolates. Full article
(This article belongs to the Special Issue Application of Advanced Molecular Methods to Study Infections)
Show Figures

Figure 1

13 pages, 1522 KiB  
Article
Whole-Genome Sequencing Characterization of Virulence Profiles of Listeria monocytogenes Food and Human Isolates and In Vitro Adhesion/Invasion Assessment
by Giuditta Fiorella Schiavano, Collins Njie Ateba, Annalisa Petruzzelli, Veronica Mele, Giulia Amagliani, Fabrizia Guidi, Mauro De Santi, Francesco Pomilio, Giuliana Blasi, Antonietta Gattuso, Stefania Di Lullo, Elena Rocchegiani and Giorgio Brandi
Microorganisms 2022, 10(1), 62; https://doi.org/10.3390/microorganisms10010062 - 28 Dec 2021
Cited by 29 | Viewed by 3530
Abstract
Listeria monocytogenes (Lm) is the causative agent of human listeriosis. Lm strains have different virulence potential. For this reason, we preliminarily characterised via Whole-Genome Sequencing (WGS) some Lm strains for their key genomic features and virulence-associated determinants, assigning the clonal complex [...] Read more.
Listeria monocytogenes (Lm) is the causative agent of human listeriosis. Lm strains have different virulence potential. For this reason, we preliminarily characterised via Whole-Genome Sequencing (WGS) some Lm strains for their key genomic features and virulence-associated determinants, assigning the clonal complex (CC). Moreover, the ability of the same strains to adhere to and invade human colon carcinoma cell line Caco-2, evaluating the possible correspondence with their genetic virulence profile, was also assessed. The clinical strains typed belonged to clonal complex (CC)1, CC31, and CC101 and showed a very low invasiveness. The Lm strains isolated from food were assigned to CC1, CC7, CC9, and CC121. All CC1 carried the hypervirulence pathogenicity island LIPI-3 in addition to LIPI-1. Premature stop codons in the inlA gene were found only in Lm of food origin belonging to CC9 and CC121. The presence of LIPI2_inlII was observed in all the CCs except CC1. The CC7 strain, belonging to an epidemic cluster, also carried the internalin genes inlG and inlL and showed the highest level of invasion. In contrast, the human CC31 strain lacked the lapB and vip genes and presented the lowest level of invasiveness. In Lm, the genetic determinants of hypo- or hypervirulence are not necessarily predictive of a cell adhesion and/or invasion ability in vitro. Moreover, since listeriosis results from the interplay between host and virulence features of the pathogen, even hypovirulent clones are able to cause infection in immunocompromised people. Full article
(This article belongs to the Special Issue An Update on Listeria monocytogenes)
Show Figures

Figure 1

18 pages, 1633 KiB  
Article
Presence of Listeria monocytogenes in Ready-to-Eat Artisanal Chilean Foods
by Fernanda Bustamante, Eduard Maury-Sintjago, Fabiola Cerda Leal, Sergio Acuña, Juan Aguirre, Miriam Troncoso, Guillermo Figueroa and Julio Parra-Flores
Microorganisms 2020, 8(11), 1669; https://doi.org/10.3390/microorganisms8111669 - 27 Oct 2020
Cited by 16 | Viewed by 4840
Abstract
Ready-to-eat (RTE) artisanal foods are very popular, but they can be contaminated by Listeria monocytogenes. The aim was to determine the presence of L. monocytogenes in artisanal RTE foods and evaluate its food safety risk. We analyzed 400 RTE artisanal food samples [...] Read more.
Ready-to-eat (RTE) artisanal foods are very popular, but they can be contaminated by Listeria monocytogenes. The aim was to determine the presence of L. monocytogenes in artisanal RTE foods and evaluate its food safety risk. We analyzed 400 RTE artisanal food samples requiring minimal (fresh products manufactured by a primary producer) or moderate processing (culinary products for sale from the home, restaurants such as small cafés, or on the street). Listeria monocytogenes was isolated according to the ISO 11290-1:2017 standard, detected with VIDAS equipment, and identified by real-time polymerase chain reaction (PCR). A small subset (n = 8) of the strains were further characterized for evaluation. The antibiotic resistance profile was determined by the CLSI methodology, and the virulence genes hlyA, prfA, and inlA were detected by PCR. Genotyping was performed by pulsed-field gel electrophoresis (PFGE). Listeria monocytogenes was detected in 7.5% of RTE artisanal foods. On the basis of food type, positivity in minimally processed artisanal foods was 11.6%, significantly different from moderately processed foods with 6.2% positivity (p > 0.05). All the L. monocytogenes strains (n = 8) amplified the three virulence genes, while six strains exhibited premature stop codons (PMSC) in the inlA gene; two strains were resistant to ampicillin and one strain was resistant to sulfamethoxazole-trimethoprim. Seven strains were 1/2a serotype and one was a 4b strain. The sampled RTE artisanal foods did not meet the microbiological criteria for L. monocytogenes according to the Chilean Food Sanitary Regulations. The presence of virulence factors and antibiotic-resistant strains make the consumption of RTE artisanal foods a risk for the hypersensitive population that consumes them. Full article
(This article belongs to the Special Issue Artisanal Foods: Challenges for Microbiological Control and Safety)
Show Figures

Figure 1

12 pages, 838 KiB  
Article
Genomic Diversity of Listeria monocytogenes Isolated from Clinical and Non-Clinical Samples in Chile
by Viviana Toledo, Henk C. Den Bakker, Juan Carlos Hormazábal, Gerardo González-Rocha, Helia Bello-Toledo, Magaly Toro and Andrea I. Moreno-Switt
Genes 2018, 9(8), 396; https://doi.org/10.3390/genes9080396 - 2 Aug 2018
Cited by 30 | Viewed by 5507
Abstract
Listeria monocytogenes is the causative agent of listeriosis, which is an uncommon but severe infection associated with high mortality rates in humans especially in high-risk groups. This bacterium survives a variety of stress conditions (e.g., high osmolality, low pH), which allows it to [...] Read more.
Listeria monocytogenes is the causative agent of listeriosis, which is an uncommon but severe infection associated with high mortality rates in humans especially in high-risk groups. This bacterium survives a variety of stress conditions (e.g., high osmolality, low pH), which allows it to colonize different niches especially niches found in food processing environments. Additionally, a considerable heterogeneity in pathogenic potential has been observed in different strains. In this study, 38 isolates of L. monocytogenes collected in Chile from clinical samples (n = 22) and non-clinical samples (n = 16) were analyzed using whole genome sequencing (WGS) to determine their genomic diversity. A core genome Single Nucleotide Polymorphism (SNP) tree using 55 additional L. monocytogenes accessions classified the Chilean isolates in lineages I (n = 25) and II (n = 13). In silico, Multi-locus sequence typing (MLST) differentiated the isolates into 13 sequence types (ST) in which the most common were ST1 (15 isolates) and ST9 (6 isolates) and represented 55% of the isolates. Genomic elements associated with virulence (i.e., LIPI-1, LIPI-3, inlA, inlB, inlC, inlG, inlH, inlD, inlE, inlK, inlF, and inlJ) and stress survival (i.e., stress survival islet 1 and stress survival islet 2) were unevenly distributed among clinical and non-clinical isolates. In addition, one novel inlA premature stop codon (PMSC) was detected. Comparative analysis of L. monocytogenes circulating in Chile revealed the presence of globally distributed sequence types along with differences among the isolates analyzed at a genomic level specifically associated with virulence and stress survival. Full article
(This article belongs to the Special Issue Genetics and Genomics of Foodborne Pathogens)
Show Figures

Figure 1

Back to TopTop