Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (150)

Search Parameters:
Keywords = pozzolanic binders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4475 KiB  
Article
Physical, Mechanical, and Durability Behavior of Sustainable Mortars with Construction and Demolition Waste as Supplementary Cementitious Material
by Sandra Cunha, Kubilay Kaptan, Erwan Hardy and José Aguiar
Buildings 2025, 15(15), 2757; https://doi.org/10.3390/buildings15152757 - 5 Aug 2025
Abstract
The construction industry plays a major role in the consumption of natural resources and the generation of waste. Construction and demolition waste (CDW) is produced in substantial volumes globally and is widely available. Its accumulation poses serious challenges related to storage and disposal, [...] Read more.
The construction industry plays a major role in the consumption of natural resources and the generation of waste. Construction and demolition waste (CDW) is produced in substantial volumes globally and is widely available. Its accumulation poses serious challenges related to storage and disposal, highlighting the need for effective strategies to mitigate the associated environmental impacts of the sector. This investigation intends to evaluate the influence of mixed CDW on the physical, mechanical, and durability properties of mortars with CDW partially replacing Portland cement, and allow performance comparisons with mortars produced with fly ash, a commonly used supplementary binder in cement-based materials. Thus, three mortar formulations were developed (reference mortar, mortar with 25% CDW, and mortars with 25% fly ash) and several characterization tests were carried out on the CDW powder and the developed mortars. The work’s principal findings revealed that through mechanical grinding processes, it was possible to obtain a CDW powder suitable for cement replacement and with good indicators of pozzolanic activity. The physical properties of the mortars revealed a decrease of about 10% in water absorption by immersion, which resulted in improved performance regarding durability, especially with regard to the lower carbonation depth (−1.1 mm), and a decrease of 51% in the chloride diffusion coefficient, even compared to mortars incorporating fly ash. However, the mechanical performance of the mortars incorporating CDW was reduced (25% in terms of flexural strength and 58% in terms of compressive strength), but their practical applicability was never compromised and their mechanical performance proved to be superior to that of mortars incorporating fly ash. Full article
(This article belongs to the Special Issue Research on Sustainable Materials in Building and Construction)
Show Figures

Figure 1

14 pages, 1882 KiB  
Article
Carbon-Negative Construction Material Based on Rice Production Residues
by Jüri Liiv, Catherine Rwamba Githuku, Marclus Mwai, Hugo Mändar, Peeter Ritslaid, Merrit Shanskiy and Ergo Rikmann
Materials 2025, 18(15), 3534; https://doi.org/10.3390/ma18153534 - 28 Jul 2025
Viewed by 284
Abstract
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting [...] Read more.
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting as a strong pozzolanic agent. Wood ash contributes calcium oxide and alkalis to serve as a reactive binder, while rice straw functions as a lightweight organic filler, enhancing thermal insulation and indoor climate comfort. These materials undergo natural pozzolanic reactions with water, eliminating the need for Portland cement—a major global source of anthropogenic CO2 emissions (~900 kg CO2/ton cement). This process is inherently carbon-negative, not only avoiding emissions from cement production but also capturing atmospheric CO2 during lime carbonation in the hardening phase. Field trials in Kenya confirmed the composite’s sufficient structural strength for low-cost housing, with added benefits including termite resistance and suitability for unskilled laborers. In a collaboration between the University of Tartu and Kenyatta University, a semi-automatic mixing and casting system was developed, enabling fast, low-labor construction of full-scale houses. This innovation aligns with Kenya’s Big Four development agenda and supports sustainable rural development, post-disaster reconstruction, and climate mitigation through scalable, eco-friendly building solutions. Full article
Show Figures

Figure 1

17 pages, 6527 KiB  
Article
Mechanical Properties of Bio-Printed Mortars with Bio-Additives for Green and Sustainable Construction
by Sotirios Pemas, Dimitrios Baliakas, Eleftheria Maria Pechlivani and Maria Stefanidou
Materials 2025, 18(14), 3375; https://doi.org/10.3390/ma18143375 - 18 Jul 2025
Viewed by 440
Abstract
Additive manufacturing (AM) has brought significant breakthroughs to the construction sector, such as the ability to fabricate complex geometries, enhance efficiency, and reduce both material usage and construction waste. However, several challenges must still be addressed to fully transition from conventional construction practices [...] Read more.
Additive manufacturing (AM) has brought significant breakthroughs to the construction sector, such as the ability to fabricate complex geometries, enhance efficiency, and reduce both material usage and construction waste. However, several challenges must still be addressed to fully transition from conventional construction practices to innovative and sustainable green alternatives. This study investigates the use of non-cementitious traditional mixtures for green construction applications through 3D printing using Liquid Deposition Modeling (LDM) technology. To explore the development of mixtures with enhanced physical and mechanical properties, natural pine and cypress wood shavings were added in varying proportions (1%, 3%, and 5%) as sustainable additives. The aim of this study is twofold: first, to demonstrate the printability of these eco-friendly mortars that can be used for conservation purposes and overcome the challenges of incorporating bio-products in 3D printing; and second, to develop sustainable composites that align with the objectives of the European Green Deal, offering low-emission construction solutions. The proposed mortars use hydrated lime and natural pozzolan as binders, river sand as an aggregate, and a polycarboxylate superplasticizer. While most studies with bio-products focus on traditional methods, this research provides proof of concept for their use in 3D printing. The study results indicate that, at low percentages, both additives had minimal effect on the physical and mechanical properties of the tested mortars, whereas higher percentages led to progressively more significant deterioration. Additionally, compared to molded specimens, the 3D-printed mortars exhibited slightly reduced mechanical strength and increased porosity, attributable to insufficient compaction during the printing process. Full article
(This article belongs to the Special Issue Eco-Friendly Materials for Sustainable Buildings)
Show Figures

Figure 1

23 pages, 5352 KiB  
Article
Durability Performance of Alkali-Activated Natural Pozzolan and Limestone Powder Mortar in Sulfate Environments
by Adeshina Adewale Adewumi, Babatunde Abiodun Salami, Mohd Azreen Bin Mohd Ariffin, Moruf Olalekan Yusuf, Khaled A. Alawi Al-Sodani and Mohammed Ibrahim
Sustainability 2025, 17(12), 5611; https://doi.org/10.3390/su17125611 - 18 Jun 2025
Viewed by 383
Abstract
The pressing need for sustainable construction materials has identified alkali-activated materials (AAMs) as eco-friendly alternatives to conventional Portland cement. This study explores the synergistic performance of alkaline-activated natural pozzolan and limestone powder (AANL) blends against sulfate attack, evaluating mortar specimens immersed in sodium [...] Read more.
The pressing need for sustainable construction materials has identified alkali-activated materials (AAMs) as eco-friendly alternatives to conventional Portland cement. This study explores the synergistic performance of alkaline-activated natural pozzolan and limestone powder (AANL) blends against sulfate attack, evaluating mortar specimens immersed in sodium sulfate, magnesium sulfate, and a combined sulfate solution over 12 months. The samples were synthesized using natural pozzolan (NP) and limestone powder (LSP) in three distinct binder combinations to evaluate the influence of varying precursor ratios on the material’s performance, as follows: NP: LSP = 40:60 (AN40L60), 50:50 (AN50L50), and 60:40 (AN60L40). At the same time, the alkaline activators of 10 M NaOH(aq) and Na₂SiO3(aq) were combined in a ratio of 1:1 and cured at 75 °C. The research examines the weight variations of the samples, their residual compressive strength, and microstructural characteristics under exposure to magnesium sulfate, sodium sulfate, and a combined sulfate solution. In terms of weight change, samples exposed to Na2SO4 gained weight slightly, with AN40L60 recording the highest gain (3.2%) due to the ingress of sulfate ions and pore filling. Under MgSO4, AN60L40 had the lowest weight gain (29%), while AN40L60 reached 54%. In mixed sulfate, AN60L40 showed negligible weight gain (0.11%); whereas, AN50L50 and AN40L60 gained 2.43% and 1.81%, respectively. Compressive strength retention after one year indicated that mixes with higher NP content fared better. AN60L40 exhibited the highest residual strength across all solutions—16.12 MPa in Na2SO4, 12.5 MPa in MgSO4, and 19.45 MPa in the mixed solution. Conversely, AN40L60 showed the highest strength degradation, losing 47.22%, 58.11%, and 55.89%, respectively. SEM-EDS and FTIR analyses confirm that LSP’s vulnerability to sulfate attack diminishes with increased NP incorporation, highlighting a synergistic interaction that mitigates degradation and retains structural integrity. The combination of 60% NP and 40% LSP demonstrated superior resistance to all sulfate environments, as evidenced by visual durability, minimized weight gain, and retained compressive strength. This study highlights the potential of tailored NP-LSP combinations in developing durable and sustainable AAMs, paving the way for innovative solutions in sulfate-prone environments, while reducing environmental impact and promoting economic efficiency. Full article
Show Figures

Figure 1

27 pages, 7579 KiB  
Article
Optimization of the Proportioning and Microscopic Mechanism Study of Cement Mortar Prepared with Copper Tailings as Fine Aggregate
by Haizhou Li, Lu Zhang, Jianping Liu, Daozhong Chu and Jiaolong Ren
Materials 2025, 18(11), 2569; https://doi.org/10.3390/ma18112569 - 30 May 2025
Viewed by 395
Abstract
To address the low resource utilization of copper tailings and high environmental impact of conventional river sand, this study innovatively integrates Box–Behnken design (BBD) with fractal theory to systematically investigate the performance optimization mechanisms of cement mortar incorporating copper tailings sand. A three-factor [...] Read more.
To address the low resource utilization of copper tailings and high environmental impact of conventional river sand, this study innovatively integrates Box–Behnken design (BBD) with fractal theory to systematically investigate the performance optimization mechanisms of cement mortar incorporating copper tailings sand. A three-factor interaction model was developed through BBD experimental design, considering water–cement ratio (0.38–0.48), replacement ratio (10–30%), and binder–sand ratio (0.3–0.4), to elucidate the macroscopic performance evolution under multiparameter coupling effects. Fractal dimension analysis was employed to quantitatively characterize microstructural evolution. Experimental results demonstrate that the optimal parameters (water–cement ratio: 0.43, replacement ratio: 20%, binder–sand ratio: 0.35) yield superior performance, with 28-day compressive/flexural strengths reaching 61.88/7.14 MPa (12.3%/9.8% enhancement over the control group), and sulfate attack resistance showing 0.74% mass loss after 30 cycles. Microstructural analysis reveals reduced fractal dimension (D = 2.31) in copper tailings-modified specimens, indicating improved pore structure homogeneity. The enhanced performance is attributed to synergistic effects of micro-aggregate filling and pozzolanic reaction-driven C-S-H gel densification. This research establishes a novel multiscale methodology overcoming the limitations of conventional single-factor analysis, providing theoretical and technical support for high-value utilization of industrial solid wastes in construction materials. Full article
Show Figures

Figure 1

24 pages, 4894 KiB  
Article
Microstructural Characterization of Expansive Soil Stabilized with Coconut Husk Ash: A Multi-Technique Investigation into Mineralogy, Pore Architecture, and Surface Interactions
by Ankur Abhishek, Anasua GuhaRay, Toshiro Hata and Hossam Abuel-Naga
Minerals 2025, 15(5), 516; https://doi.org/10.3390/min15050516 - 14 May 2025
Cited by 1 | Viewed by 757
Abstract
Black cotton soil (BCS) is unsuitable for construction due to its high plasticity, low shear strength, and significant volume changes upon wetting and drying. The present study investigates the effectiveness of an alkali-activated coconut husk ash (CHA) binder in improving the geotechnical properties [...] Read more.
Black cotton soil (BCS) is unsuitable for construction due to its high plasticity, low shear strength, and significant volume changes upon wetting and drying. The present study investigates the effectiveness of an alkali-activated coconut husk ash (CHA) binder in improving the geotechnical properties of BCS. CHA is derived from coconut husk and serves as a sustainable binder. Microstructural characterization of untreated and CHA-treated BCS was carried out using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The specific surface area (SSA) and porosity were evaluated using nitrogen gas adsorption methods based on the Brunauer–Emmett–Teller (BET) and Langmuir techniques. The Barrett–Joyner–Halenda (BJH) method demonstrated a decrease in mean pore diameter from 6.7 nm to 6.2 nm following CHA treatment. The SSA diminished from 40.94 m2/g to 25.59 m2/g, signifying the development of calcium silicate hydrate (C-S-H) gels that occupied the pore spaces. The formation of pozzolanic reaction products enhanced the microstructural integrity of the treated soil. Unconfined compressive strength (UCS) test results at 24 h and 28 days of curing for CHA-treated soil have been incorporated to analyze the optimum binder content. The UCS values enhanced significantly from 182 kPa to 305 kPa and 1030 kPa, respectively, at 9% binder content after 24 h and 28 days of curing. The microstructural and mechanical strength test analysis results indicated that CHA is a feasible and environmentally sustainable substitute for BCS stabilization. CHA-based AAB will be an eco-friendly alternative to cement and lime, reducing CO2 emissions and construction costs. Full article
Show Figures

Figure 1

19 pages, 10758 KiB  
Article
Archaeometric Investigation of Artificial Stone Materials from the Theatrum Marcelli (Rome, Italy)
by Maria Aantonietta Zicarelli, Michela Ricca, Maria Francesca Alberghina, Salvatore Schiavone, Mauro Francesco La Russa and Luciana Randazzo
Heritage 2025, 8(2), 57; https://doi.org/10.3390/heritage8020057 - 31 Jan 2025
Viewed by 1040
Abstract
This study illustrates the results of minero-petrographic and microchemical investigations of artificial stone materials (mortars, plasters, and bricks) taken from the Theatrum Marcelli (Rome, Italy). To achieve this objective, the artificial building materials were analysed using Polarized Optical Microscopy (POM) and a Scanning [...] Read more.
This study illustrates the results of minero-petrographic and microchemical investigations of artificial stone materials (mortars, plasters, and bricks) taken from the Theatrum Marcelli (Rome, Italy). To achieve this objective, the artificial building materials were analysed using Polarized Optical Microscopy (POM) and a Scanning Electron Microscope (SEM) used in backscattered electron (BSE) mode and coupled with an Energy-Dispersive Spectrometer (EDS) after a sampling campaign. The POM was aimed at collecting information on the textural and mineralogical characteristics of the samples (identification of the main minerals constituting the aggregate, grain size and shape, and the evaluation of the binder/aggregate ratio). The data also supported technological assessments through the characterization of the raw materials used for the manufacture of the mortars/plasters. Furthermore, the SEM-EDS investigations revealed the chemical composition of both the aggregate and the binder, which was useful for estimating their hydraulicity index (HI). The diagnostic campaign allowed us to obtain interesting information on the plasters/mortars used in the Theatrum Marcelli, together with their probable production technology. In particular, the raw materials were quite homogeneous, thus confirming the traditional methodology used in Roman times to create natural hydraulic mortars by the addition of pozzolanic volcanic material to aerial lime. The volcanic component of the aggregate seems to be compatible with the ultrapotassic products of the Roman Magmatic Province—likely with the Pozzolane Rosse pyroclastic deposit of the Alban Hills district. Full article
Show Figures

Figure 1

20 pages, 3910 KiB  
Article
Slag Substitution Effect on Features of Alkali-Free Accelerator-Reinforced Cemented Paste Backfill
by Ibrahim Cavusoglu
Minerals 2025, 15(2), 135; https://doi.org/10.3390/min15020135 - 29 Jan 2025
Cited by 1 | Viewed by 669
Abstract
Cemented paste backfill (CPB) improves underground stability by filling mine voids, but the high cost of cement presents economic challenges for miners. While alternative binders and admixtures have been explored, the combined impact of slag substitution and alkali-free (AF) accelerators on CPB performance [...] Read more.
Cemented paste backfill (CPB) improves underground stability by filling mine voids, but the high cost of cement presents economic challenges for miners. While alternative binders and admixtures have been explored, the combined impact of slag substitution and alkali-free (AF) accelerators on CPB performance is not yet fully understood. This study investigates the influences of slag substitution and AF accelerators on the performance of CPB through a comprehensive experimental approach. CPB samples were prepared with slag substitution ratios of 25%, 50%, and 75%, maintaining a fixed AF accelerator content of 0.4%. Various test techniques, including unconfined comprehensive strength (UCS), mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and thermal analysis (TG/DTA), were employed to study their mechanical and microstructural properties. Monitoring tests were also conducted to thoroughly assess the performance of CPB, including suction (self-desiccation), electrical conductivity (EC), and volumetric water content (VWC) tests. The results showed that the PCI50–SL50–0.4AF sample exhibited 2.3 times higher strength than the control sample for 28 days, with this improvement attributed to enhanced pozzolanic reactions contributing to better microstructural compactness. Monitoring tests revealed accelerated hydration kinetics and reduced water content in slag-reinforced CPB, highlighting the significant role of AF accelerator in facilitating rapid setting and improving early-age mechanical strength. Microstructural findings revealed that porosity decreased and C–S–H gel formation increased in the specimen containing slag and AF accelerators, contributing to increased strength and durability. These findings highlight the potential usage of slag and AF accelerators to enhance CPB’s mechanical, microstructural, and hydration properties, offering significant benefits for mining operations by improving backfill performance, while contributing to environmental sustainability through reduced cement consumption and associated CO2 emissions. Full article
(This article belongs to the Special Issue Cemented Mine Waste Backfill: Experiment and Modelling: 2nd Edition)
Show Figures

Figure 1

18 pages, 7990 KiB  
Article
Influence of Silica Fume (SF) Content on Passive Film Formation of Steel Reinforcement Inside Hardened Concrete
by Marcella Amaral, Isaac Aguiar Oliveira, Diogo Henrique de Bem, Giovana Costa Réus, Gustavo Macioski, Marcelo Miranda Farias and Marcelo Henrique Farias de Medeiros
Corros. Mater. Degrad. 2025, 6(1), 3; https://doi.org/10.3390/cmd6010003 - 13 Jan 2025
Viewed by 1232
Abstract
Corrosion is one of the causes of failure in reinforced concrete structures, and forming a passive film on the steel is essential for protection. Although several studies have looked at passive film formation in concrete pore solutions, few have considered its formation in [...] Read more.
Corrosion is one of the causes of failure in reinforced concrete structures, and forming a passive film on the steel is essential for protection. Although several studies have looked at passive film formation in concrete pore solutions, few have considered its formation in hardened concrete and the influence of silica fume (SF) in the binder composition. This study aims to evaluate the influence of the SF content on passive film formation time in concrete. Periodic measurements assessed the electrical resistivity and corrosion current density of concrete samples containing 5%, 10%, 15%, and 20% SF. The alkalinity of the mixtures and the kinetics of the pozzolanic reaction were also monitored by XRD and titration tests. The control mixtures exhibited susceptibility to corrosion, regardless of the curing age evaluated. In contrast, the partial replacement of cement with SF accelerated the formation of the passive film on the steel surface, suggesting a delayed onset of corrosion due to modifications in the physical properties of the concrete. Also, the portlandite content and pH can predict passive film formation, with SF significantly accelerating this process. Full article
Show Figures

Figure 1

19 pages, 21321 KiB  
Article
Mechanochemical Activation of Waste Clay Brick Powder with Addition of Waste Glass Powder and Its Influence on Pozzolanic Reactivity
by Csilla Őze, Nikolett Badacsonyi and Éva Makó
Molecules 2024, 29(23), 5740; https://doi.org/10.3390/molecules29235740 - 5 Dec 2024
Cited by 1 | Viewed by 1105
Abstract
The availability of industrially used supplementary cementitious materials (SCMs, e.g., fly ash) decreases due to the rise in renewable energy sources and recycling technologies. Therefore, it is essential to find alternative SCMs (e.g., waste glass and clay brick powder) that are locally available. [...] Read more.
The availability of industrially used supplementary cementitious materials (SCMs, e.g., fly ash) decreases due to the rise in renewable energy sources and recycling technologies. Therefore, it is essential to find alternative SCMs (e.g., waste glass and clay brick powder) that are locally available. Accordingly, in this paper, the mechanochemical activation of clay brick waste (CBW) with abrasive glass powder (GP) and its pozzolanic reactivity are investigated. The mixtures of CBW and GP in mass ratios of 100:0, 75:25, 50:50, and 25:75 were mechanochemically activated for 15, 30, 45, and 60 min. The physical, chemical, and structural changes of the mixtures were examined by X-ray diffractometry, Fourier-transform infrared spectroscopy, scanning electron microscopy, and specific surface area measurements. The pozzolanic reactivity was characterized by the active silica content and the 28-day compressive strength of the binders (a mixture of ordinary Portland cement and activated material). The addition of GP favorably reduced the agglomeration and increased the active silica content of the activated mixtures (e.g., by 7–37% m/m at 15 min of mechanochemical activation). The 60 min of mechanochemical activation and the addition of 50% m/m of GP can increase the compressive strength by approximately 8%. Economically, the addition of 50% m/m of GP was found to be favorable, where only 30 min of mechanochemical activation resulted in a considerable increase in strength compared to that of the ordinary Portland cement. Full article
Show Figures

Figure 1

23 pages, 16532 KiB  
Article
Strength and Durability Characteristics of Sustainable Pavement Base Course Stabilized with Cement Bypass Dust and Spent Fluid Catalytic Cracking Catalyst
by Sajjad E. Rasheed, Mohammed Y. Fattah, Waqed H. Hassan and Mohamed Hafez
Infrastructures 2024, 9(12), 217; https://doi.org/10.3390/infrastructures9120217 - 30 Nov 2024
Cited by 3 | Viewed by 1838
Abstract
This study explores the potential of a composite binder comprising cement bypass dust (CBD) and spent fluid catalytic cracking (FCC) catalyst for sustainable pavement base stabilization. Various CBD/FCC ratios (30:70, 50:50, 70:30) and binder contents (4%, 6%, 8%, 10%) were evaluated through laboratory [...] Read more.
This study explores the potential of a composite binder comprising cement bypass dust (CBD) and spent fluid catalytic cracking (FCC) catalyst for sustainable pavement base stabilization. Various CBD/FCC ratios (30:70, 50:50, 70:30) and binder contents (4%, 6%, 8%, 10%) were evaluated through laboratory testing. The 50:50 CBD/FCC mixture demonstrated optimal performance, achieving an unconfined compressive strength (UCS) of 15.6 MPa at 28 days with 10% binder content. The mix exhibited improved stiffness (E50 modulus up to 13,922 MPa) and resistance to degradation under wetting–drying cycles, attributable to synergistic cementitious and pozzolanic reactions. Microstructural analysis revealed a denser matrix, validating the enhanced performance. These findings suggest CBD and FCC, as promising materials for sustainable pavement construction, align with circular economy principles. Full article
Show Figures

Figure 1

23 pages, 10593 KiB  
Article
Mechanical, Durability, and Microstructure Characterization of Pervious Concrete Incorporating Polypropylene Fibers and Fly Ash/Silica Fume
by Hassan Bilal, Xiaojian Gao, Liborio Cavaleri, Alamgir Khan and Miao Ren
J. Compos. Sci. 2024, 8(11), 456; https://doi.org/10.3390/jcs8110456 - 3 Nov 2024
Cited by 5 | Viewed by 2890
Abstract
Pervious concrete, because of its high porosity, is a suitable material for reducing the effects of water precipitations and is primarily utilized in road pavements. In this study, the effects of binder-to-aggregate (B/A) ratios, as well as mineral admixtures with and without polypropylene [...] Read more.
Pervious concrete, because of its high porosity, is a suitable material for reducing the effects of water precipitations and is primarily utilized in road pavements. In this study, the effects of binder-to-aggregate (B/A) ratios, as well as mineral admixtures with and without polypropylene fibers (PPFs) (0.2% by volume), including fly ash (FA) or silica fume (SF) (10% by substitution of cement), on the mechanical properties and durability of pervious concrete were experimentally observed. The experimental campaign included the following tests: permeability, porosity, compressive strength, splitting tensile strength, and flexural strength tests. The durability performance was evaluated by observing freeze–thaw cycles and abrasion resistance after 28 d curing. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA-DTA), and scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS) were employed to investigate the phase composition and microstructure. The results revealed that, for an assigned B/A ratio identified as optimal, the incorporation of mineral admixtures and fibers mutually compensated for their respective negative effects, resulting in the effective enhancement of both mechanical/microstructural characteristics and durability properties. In general, pervious concrete developed with fly ash or silica fume achieved higher compressive strength (>35 MPA) and permeability of 4 mm/s, whereas the binary combination of fly ash or silica fume with 0.2% PPFs yielded a flexural strength greater than 6 MPA and a permeability of 6 mm/s. Silica fume-based pervious concrete exhibited excellent performance in terms of freeze–thaw (F-T) cycling and abrasion resistance, followed by fiber-reinforced pervious concrete, except fly ash-based pervious concrete. Microstructural analysis showed that the inclusion of fly ash or silica fume reduced the harmful capillary pores and refined the pore enlargement caused by PPFs in the cement interface matrix through micro-filling and a pozzolanic reaction, leading to improved mechanical and durability characteristics of pervious concrete. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

22 pages, 8967 KiB  
Article
Physical, Mechanical and Durability Properties of Eco-Friendly Engineered Geopolymer Composites
by Ahmed M. Tahwia, Duaa S. Aldulaimi, Mohamed Abdellatief and Osama Youssf
Infrastructures 2024, 9(11), 191; https://doi.org/10.3390/infrastructures9110191 - 25 Oct 2024
Cited by 20 | Viewed by 2197
Abstract
Engineered geopolymer composite (EGC) is a high-performance material with enhanced mechanical and durability capabilities. Ground granulated blast furnace slag (GGBFS) and silica fume (SF) are common binder materials in producing EGC. However, due to the scarcity and high cost of these materials in [...] Read more.
Engineered geopolymer composite (EGC) is a high-performance material with enhanced mechanical and durability capabilities. Ground granulated blast furnace slag (GGBFS) and silica fume (SF) are common binder materials in producing EGC. However, due to the scarcity and high cost of these materials in some countries, sustainable alternatives are needed. This research focused on producing eco-friendly EGC made of cheaper and more common pozzolanic waste materials that are rich in aluminum and silicon. Rice husk ash (RHA), granite waste powder (GWP), and volcanic pumice powder (VPP) were used as partial substitutions (10–50%) of GGBFS in EGC. The effects of these wastes on workability, unit weight, compressive strength, tensile strength, flexural strength, water absorption, and porosity of EGC were examined. The residual compressive strength of the proposed EGC mixtures at high elevated temperatures (200, 400, and 600 °C) was also evaluated. Additionally, scanning electron microscope (SEM) was employed to analyze the EGC microstructure characteristics. The experimental results demonstrated that replacing GGBFS with RHA and GWP at high replacement ratios decreased EGC workability by up to 23.1% and 30.8%, respectively, while 50% VPP improved EGC workability by up to 38.5%. EGC mixtures made with 30% RHA, 20% GWP, or 10% VPP showed the optimal results in which they exhibited the highest compressive, tensile, and flexural strengths, as well as the highest residual compressive strength when exposed to high elevated temperatures. The water absorption and porosity increased by up to 106.1% and 75.1%, respectively, when using RHA; increased by up to 23.2% and 18.6%, respectively, when using GWP; and decreased by up to 24.7% and 22.6%, respectively, when using VPP in EGC. Full article
(This article belongs to the Special Issue Innovative Solutions for Concrete Applications)
Show Figures

Figure 1

11 pages, 2635 KiB  
Article
Study on the Properties of All-Solid Waste Fluidized Filling Materials Applied to Mine Void Area Filling Engineering
by Yuting Lu, Junjie Yang, Yalei Wu, Ruifan Lu, Yunhong Li, Lixiang Zhang and Jiangtao Guo
Materials 2024, 17(21), 5154; https://doi.org/10.3390/ma17215154 - 23 Oct 2024
Cited by 1 | Viewed by 1098
Abstract
The extraction of mining resources, as well as processing processes such as ore beneficiation and smelting, generate large amounts of tailings that are difficult to directly utilize. Meanwhile, substantial filling materials are required for the voids formed after mining operations, and the environmental [...] Read more.
The extraction of mining resources, as well as processing processes such as ore beneficiation and smelting, generate large amounts of tailings that are difficult to directly utilize. Meanwhile, substantial filling materials are required for the voids formed after mining operations, and the environmental issues and safety hazards brought on by massive solid waste disposal cannot be ignored. By utilizing solid waste with alkaline and pozzolanic activity as the binder component and gold tailings as filler aggregate to prepare filler material to fill up the void areas, the purpose of waste treatment can be achieved. In this study, salt sludge, steel slag, ground granulated blast furnace slag, and gold tailings were used to prepare all-solid waste fluidized filling material for filling mine void areas, which not only solves the engineering safety problem of easy collapse of the mine airspace in the mining process but also ensures a backfill effect with high strength, which continuously guarantees the uninterrupted progress of the mining project. At the same time, the preparation of fluidized materials can consume a large amount of tailings and other solid waste, solving the problem of their stockpiling. The components of the solid wastes used are all general industrial solid wastes, so the preparation of the fluidized materials will not have an impact on the surrounding environment. The effects of binder ratios on the workability of the filling materials were investigated by means of the slump and slump flow tests. Combined with the unconfined compressive strength test, the change in backfill material strength with curing age and the water–binder ratio was studied. The experimental results showed that the slump and slump flow value of the filling material were positively correlated with the water–binder ratio. The water–binder ratio range satisfying a slump value of 180~260 mm and a slump flow value not less than 400 mm was 0.95~1.106. However, the strength decreased with the increase in the water–binder ratio, conforming to a hyperbolic relationship. The all-solid waste fluidized filling material had strengths not less than 0.22, 1.09, and 1.95 MPa at 3, 7, and 28 d, respectively, meeting the workability requirements. Finally, a method for determining the optimal range of water–binder ratio considering both workability performance and strength is proposed based on the relationship between slump value, slump flow value, unconfined compressive strength, and the water–binder ratio. Full article
Show Figures

Graphical abstract

14 pages, 17999 KiB  
Article
Thermal and Moisture Content Monitoring of a Full-Scale Load Bearing Hemp Lime Arch Prototype
by Arthur Bohn and Andrea Bocco
Sustainability 2024, 16(20), 8912; https://doi.org/10.3390/su16208912 - 15 Oct 2024
Cited by 1 | Viewed by 1418
Abstract
Today, bio-sourced materials represent an important technological field of study, as they could sink atmospheric carbon dioxide into buildings. Little-processed construction materials would also reduce the environmental impact of the construction sector, which emitted more than 2.9 Mt of CO2 in 2020. [...] Read more.
Today, bio-sourced materials represent an important technological field of study, as they could sink atmospheric carbon dioxide into buildings. Little-processed construction materials would also reduce the environmental impact of the construction sector, which emitted more than 2.9 Mt of CO2 in 2020. Hemp-lime is a material that meets both these requirements. It is an insulating mix that can take different forms and be used in various parts of a building. The challenge is providing it with enough mechanical strength to make it loadbearing, at least to some extent. This research focuses on the construction and monitoring of a pointed arch, based on a previous experimental hemp-lime construction at Cardiff University in 2009, under the direction of architect David Lea. Since 2022, such an experiment on a possible loadbearing hemp-lime mix is being repeated at the Politecnico di Torino as part of a wider project called “experimental pavilions of vegetarian architecture”. The design and numerical analysis of the Cardiff prototype led to the modification of both the geometry and the composition of the mix using only pozzolanic air lime as the binder. The construction of the arch ended in December 2023. Observing the thermo-hygrometric conditions of this hemp-lime mix once in place is the main purpose of this article. A strong correlation is revealed between outdoor conditions with temperature and moisture content in the core of the arch. Building a full-size outdoor prototype allows for the avoidance of mathematical correction to the results obtained and allows the assessment the mix’s resistance in relation with environmental conditions. Due to some similarities of nature and function between lime and cement, many studies of lime mixes do not exceed a duration of 28 days, which cannot be considered the appropriate observation time for its curing. Therefore, we analysed this lime-based material for around 6 months, according to its own temporality and chemical kinetics. Through continuous monitoring at 10-min intervals, it was possible to highlight several significant aspects of rammed hemp-lime. The results show that the temperature within the mix is influenced by the outside temperature, but the sun exposure of certain areas drives up the corresponding temperature values more rapidly. Furthermore, while the absorption of water in the form of vapour is very rapid, desorption takes longer, as does re-establish a balance between the material and its context. Finally, solar exposure affects particularly 30-cm-thick elements, while elements that are 60 cm thick are not affected in the short term but only in long-term exposure conditions like season changes. Full article
Show Figures

Figure 1

Back to TopTop