Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = post-synthetic modification (PSM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3283 KB  
Article
A Post-Synthetic Modification Approach to Expand MIL-101-NH2 Functionalization
by Alain Vigroux, Christian Lherbet, Isabelle Fabing, Marie-Claire Barthélémy, Christophe Laurent and Pascal Hoffmann
Chemistry 2025, 7(2), 48; https://doi.org/10.3390/chemistry7020048 - 28 Mar 2025
Cited by 2 | Viewed by 2151
Abstract
Considering the importance of organic functionalization of MOFs, we here report a simple, tunable and efficient one-step post-modification procedure for introducing amino and carboxylic groups into the mesoporous metal–organic framework Al- and Cr-MIL-101-NH2 based on its reaction with alkyl bromides. This procedure [...] Read more.
Considering the importance of organic functionalization of MOFs, we here report a simple, tunable and efficient one-step post-modification procedure for introducing amino and carboxylic groups into the mesoporous metal–organic framework Al- and Cr-MIL-101-NH2 based on its reaction with alkyl bromides. This procedure allows also access to polyfunctionalized MIL-101 decorated with both carboxylic and primary amino groups. Other chemical functions, such as alcohols and alkynes, were also successfully introduced by this method. Full article
(This article belongs to the Section Chemistry of Materials)
Show Figures

Graphical abstract

16 pages, 4329 KB  
Article
Porphyrin-Based Aluminum Metal-Organic Framework with Copper: Pre-Adsorption of Water Vapor, Dynamic and Static Sorption of Diethyl Sulfide Vapor, and Sorbent Regeneration
by Mohammad Shahwaz Ahmad and Alexander Samokhvalov
Materials 2024, 17(24), 6160; https://doi.org/10.3390/ma17246160 - 17 Dec 2024
Cited by 2 | Viewed by 1192
Abstract
Metal–organic frameworks (MOFs) are hybrid inorganic–organic 3D coordination polymers with metal sites and organic linkers, which are a “hot” topic in the research of sorption, separations, catalysis, sensing, and environmental remediation. In this study, we explore the molecular mechanism and kinetics of interaction [...] Read more.
Metal–organic frameworks (MOFs) are hybrid inorganic–organic 3D coordination polymers with metal sites and organic linkers, which are a “hot” topic in the research of sorption, separations, catalysis, sensing, and environmental remediation. In this study, we explore the molecular mechanism and kinetics of interaction of the new copper porphyrin aluminum metal–organic framework (actAl-MOF-TCPPCu) compound 4 with a vapor of the volatile organic sulfur compound (VOSC) diethyl sulfide (DES). First, compound 4 was synthesized by post-synthetic modification (PSM) of Al-MOF-TCPPH2 compound 2 by inserting Cu2+ ions into the porphyrin ring and characterized by complementary qualitative and quantitative chemical, structural, and spectroscopic analysis. Second, the interaction of compound 4 with DES vapor was analyzed dynamically by the novel method of in situ time-dependent attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy at controlled humidity levels. The sorbent–adsorbate interactions, as analyzed by the shifts in IR peaks, indicate that the bonding includes the hydroxy O-H, carboxylate COO, and phenyl groups. The kinetics of sorption obeys the Langmuir pseudo-first-order rate law. The pre-adsorption of water vapor by compound 4 at the controlled relative humidity under static (equilibrium) conditions yields the binary stoichiometric adsorption complex (Al-MOF-TCPPCu)1.0(H2O)8.0. The pre-adsorption of water vapor makes the subsequent sorption of DES slower, while the kinetics obey the same rate law. Then, static pre-adsorption of water vapor was followed by static sorption of DES vapor, and the ternary adsorption complex (Al-MOF-TCPPCu)1.0(H2O)8.0(DES)3.8 was obtained. Despite the pre-adsorption of significant amounts of water, the binary complex adsorbs a large amount of DES: ca. 36.6 wt. % (per compound 4). Finally, the ternary complex is facilely regenerated by gentle heating under vacuum. Compound 4 and related MOFs are promising for adsorptive removal of vapor of DES and related VOSCs from dry and humid air. Full article
(This article belongs to the Special Issue Adsorbents and Their Applications (Second Volume))
Show Figures

Graphical abstract

12 pages, 32369 KB  
Article
Post-Synthetic Modification of an Amino-Functionalized Metal–Organic Framework for Highly In Situ Luminescent Detection of Mercury (II)
by Chen Ji, Li Pei, Junyi Qin, Pengyan Wu, Nuo Su, Ting Zhang, Yexin Zhang and Jian Wang
Nanomaterials 2023, 13(20), 2784; https://doi.org/10.3390/nano13202784 - 17 Oct 2023
Cited by 3 | Viewed by 1890
Abstract
A sulfur-containing metal–organic framework, donated as UiO-66-NSMe, was prepared by the post-synthetic modification (PSM) of UiO-66-NH2 with 2-(Methylthio)benzaldehyde, and the successful synthesis of PSM was confirmed by X-ray photoelectron spectroscopy (XPS), FT-IR and 1H NMR studies. According to the characteristics of [...] Read more.
A sulfur-containing metal–organic framework, donated as UiO-66-NSMe, was prepared by the post-synthetic modification (PSM) of UiO-66-NH2 with 2-(Methylthio)benzaldehyde, and the successful synthesis of PSM was confirmed by X-ray photoelectron spectroscopy (XPS), FT-IR and 1H NMR studies. According to the characteristics of mercury thiophilic, UiO-66-NSMe could be used as a luminescent sensor for Hg2+ detection with a high selectivity and sensitivity (Ksv = 2.5 × 104 M−1; LOD = 20 nM), which could be attributed to the coordination between sulfur sites and Hg2+ based on XPS results. In practical applications, UiO-66-NSMe yielded satisfactory recovery rates (ranging from 96.1% to 99.5%) when it was employed for detecting Hg2+ in spiked environmental samples. Furthermore, UiO-66-NSMe was successfully employed to detect mercury (II) residues with the in situ rapid nondestructive imaging in simulated fresh agricultural products. Thus, this PSM strategy could provide good guidance for environmental protection methodologies in the future. Full article
(This article belongs to the Special Issue Metal Organic Framework (MOF)-Based Micro/Nanoscale Materials)
Show Figures

Figure 1

17 pages, 6310 KB  
Article
Controlled Covalent Functionalization of ZIF-90 for Selective CO2 Capture & Separation
by Muhammad Usman, Mohd Yusuf Khan, Tanzila Anjum, Asim Laeeq Khan, Bosirul Hoque, Aasif Helal, Abbas Saeed Hakeem and Bassem A. Al-Maythalony
Membranes 2022, 12(11), 1055; https://doi.org/10.3390/membranes12111055 - 27 Oct 2022
Cited by 26 | Viewed by 5629
Abstract
Mixed Matrix Membranes (MMM) with enhanced selectivity and permeability are preferred for gas separations. The porous metal-organic frameworks (MOFs) materials incorporated in them play a crucial part in improving the performance of MMM. In this study, Zeolitic imidazolate frameworks (ZIF-90) are selected to [...] Read more.
Mixed Matrix Membranes (MMM) with enhanced selectivity and permeability are preferred for gas separations. The porous metal-organic frameworks (MOFs) materials incorporated in them play a crucial part in improving the performance of MMM. In this study, Zeolitic imidazolate frameworks (ZIF-90) are selected to fabricate Polyetherimide (PEI) MMMs owing to their lucrative structural and chemical properties. This work reports new controlled post-synthetic modifications of ZIF-90 (50-PSM-ZIF-90) with ethanolamine to control the diffusion and uptake of CO2. Physical and chemical properties of ZIF-90, such as stability and presence of aldehyde functionality in the imidazolate linker, allow for easy modulation of the ZIF-90 pores and window size to tune the gas transport properties across ZIF-90-based membranes. Effects of these materials were investigated on the performance of MMMs and compared with pure PEI membranes. Performance of the MMMs was evaluated in terms of permeability of different gases and selective separation of CO2 and H2 gas. Results presented that the permeability of all membranes was in the following order, i.e., P(H2) > P(CO2) > P(O2) > P(CH4) > P(C2H6) > P(C3H8) > P(N2), demonstrating that kinetic gas diffusion is the predominant gas transport mode in these membranes. Among all the membranes, permeability of pure PEI membrane was highest for all gases due to the uniform porous morphology. The pure PEI membrane showed highest permeability of H2, which is 486.5 Barrer, followed by 49 Barrer for O2, 29 Barrer for N2, 142 Barrer for CO2, 41 Barrer for CH4, 40 Barrer for C2H6 and 39.6 Barrer for C3H8. Results also confirm the superiority of controlled PSM-ZIF-90-PEI membrane over the pure PEI and ZIF-90-PEI membranes in CO2 and H2 separation performance. The 50-PSM-ZIF-90 PEI membrane exhibited a 20% increase in CO2 separation from methane and a 26% increase over nitrogen compared to the ZIF-90-PEI membrane. The 50-PSM-ZIF-90 PEI membrane showed 15% more H2/O2 separation and 9% more H2/CH4 separation than ZIF-90 PEI membrane. Overall, this study represents the role of controlled PSM in enhancing the property of new materials like ZIF and its application in MMMs fabrication to develop a promising approach for the CO2 capture and separation. Full article
(This article belongs to the Special Issue Advanced Membrane System for CO2 Separation and Conversion)
Show Figures

Figure 1

53 pages, 3237 KB  
Review
A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs) for Gas Adsorption
by Mays Alhamami, Huu Doan and Chil-Hung Cheng
Materials 2014, 7(4), 3198-3250; https://doi.org/10.3390/ma7043198 - 21 Apr 2014
Cited by 313 | Viewed by 27064
Abstract
Metal-organic frameworks (MOFs) are a new class of microporous materials that possess framework flexibility, large surface areas, “tailor-made” framework functionalities, and tunable pore sizes. These features empower MOFs superior performances and broader application spectra than those of zeolites and phosphine-based molecular sieves. In [...] Read more.
Metal-organic frameworks (MOFs) are a new class of microporous materials that possess framework flexibility, large surface areas, “tailor-made” framework functionalities, and tunable pore sizes. These features empower MOFs superior performances and broader application spectra than those of zeolites and phosphine-based molecular sieves. In parallel with designing new structures and new chemistry of MOFs, the observation of unique breathing behaviors upon adsorption of gases or solvents stimulates their potential applications as host materials in gas storage for renewable energy. This has attracted intense research energy to understand the causes at the atomic level, using in situ X-ray diffraction, calorimetry, Fourier transform infrared spectroscopy, and molecular dynamics simulations. This article is developed in the following order: first to introduce the definition of MOFs and the observation of their framework flexibility. Second, synthesis routes of MOFs are summarized with the emphasis on the hydrothermal synthesis, owing to the environmental-benign and economically availability of water. Third, MOFs exhibiting breathing behaviors are summarized, followed by rationales from thermodynamic viewpoint. Subsequently, effects of various functionalities on breathing behaviors are appraised, including using post-synthetic modification routes. Finally, possible framework spatial requirements of MOFs for yielding breathing behaviors are highlighted as the design strategies for new syntheses. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Back to TopTop