Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = post-installed connectors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5436 KiB  
Article
Static Behavior of Post-Installed High-Strength Large-Bolt Shear Connector with Fabricated Hybrid Fiber-Reinforced Concrete/Ordinary Concrete Deck
by Yuliang He, Junjie Li, Wujian He, Qiangqiang Wu, Yiqiang Xiang and Ying Yang
Materials 2025, 18(5), 1091; https://doi.org/10.3390/ma18051091 - 28 Feb 2025
Viewed by 501
Abstract
Recent research indicates that high-strength bolts could be more effectively and efficiently used to connect steel girders and fabricated decks or retrofit existing composite girders than headed studs. To reduce the number of bolt shear connectors and, thus, further accelerate the construction of [...] Read more.
Recent research indicates that high-strength bolts could be more effectively and efficiently used to connect steel girders and fabricated decks or retrofit existing composite girders than headed studs. To reduce the number of bolt shear connectors and, thus, further accelerate the construction of composite girders, high-strength large bolts could be an excellent alternative, resulting in greater concrete stress below the bolt. Also, hybrid fiber-reinforced concrete (HFRC) has better tensile ductility and strength than that of ordinary concrete (OC). Therefore, this study tried to design eighteen push-out test specimens, including different configurations of bolt shear connectors, to investigate the static properties of post-installed, high-strength, large-bolt shear connectors with fabricated HFRC/OC slabs. The experimental results indicated that the capacity and initial stiffness of a high-strength large through-bolt shear connector was the smallest. The fiber might enhance the capacity and initial stiffness of bolt shear connectors. Increasing the bolt diameter can significantly enhance the initial stiffness and load-bearing capacity, while the clearance of the bolt hole had a great influence on the capacity, initial stiffness, and slippage of the post-installed high-strength large-bolt shear connector. Finally, the capacity equation and slip behavior of post-installed, high-strength, large-bolt shear connector with fabricated HFRC deck were obtained using the regression method, which could provide the reference for their design. Full article
Show Figures

Figure 1

21 pages, 11214 KiB  
Article
Cyclic Behavior of Long Concrete Interfaces Crossed by Steel Screws
by Erato Oikonomopoulou, Vasiliki Palieraki, Elizabeth Vintzileou and Giovacchino Genesio
Appl. Sci. 2024, 14(18), 8246; https://doi.org/10.3390/app14188246 - 13 Sep 2024
Cited by 2 | Viewed by 785
Abstract
This study focuses on long concrete interfaces tested under cyclic actions, fastened with post-installed industrial steel screws. The overall behavior and the effect of roughness were investigated in three long interfaces, representative of connections between, e.g., a slab and a wall, a beam [...] Read more.
This study focuses on long concrete interfaces tested under cyclic actions, fastened with post-installed industrial steel screws. The overall behavior and the effect of roughness were investigated in three long interfaces, representative of connections between, e.g., a slab and a wall, a beam and a wall, etc. The results were compared with those of short interfaces tested by the authors in previous campaigns. It was observed that rough long interfaces activate their maximum resistance at small values of imposed shear slip. When roughness was reduced, the maximum resistance was also reduced, the corresponding shear slip was increased, and the overall behavior was stable. For large values of the shear slip, imposed at one end of the interface, the shear slips along it tended to be uniform, both in short and long interfaces. The limited embedment length of the screws led to their pronounced pullout. Finally, the asymmetry of resistance between the two loading directions that was observed in short interfaces was alleviated in the long ones, where also the scatter of the results was limited among duplicate specimens. Full article
Show Figures

Figure 1

29 pages, 3102 KiB  
Review
Electric Vehicles—An Overview of Current Issues—Part 2—Infrastructure and Road Safety
by Marek Guzek, Jerzy Jackowski, Rafał S. Jurecki, Emilia M. Szumska, Piotr Zdanowicz and Marcin Żmuda
Energies 2024, 17(2), 495; https://doi.org/10.3390/en17020495 - 19 Jan 2024
Cited by 6 | Viewed by 5682
Abstract
The electrification of road transport is developing dynamically around the world. Many automotive companies are introducing electric vehicles to the market, and their popularity is constantly growing. The increasing popularity of electric vehicles is caused by individual countries’ governments encouraging people to switch [...] Read more.
The electrification of road transport is developing dynamically around the world. Many automotive companies are introducing electric vehicles to the market, and their popularity is constantly growing. The increasing popularity of electric vehicles is caused by individual countries’ governments encouraging people to switch to electric vehicles and their lower operating costs. In 2022, the number of electric vehicles in China will exceed 10 million. Europe and the USA rank second and third in global electric car stock, respectively. The number of available electric vehicle models is constantly growing, remaining approximately 2.5 times smaller than the case of vehicles with an internal combustion engine. Among others, a significant limitation to the popularity of electric cars is users’ fear of range and the density of the charging infrastructure network. This paper presents the objectives regarding public areas and charging stations around the European Union’s comprehensive and core transport network. It is worth noting that the vehicle and charging point’s charging connectors vary depending on the geographical region. Therefore, the currently used charging connectors for different regions are presented. Charging time depends significantly on the charging current, the power of the charging point, and the devices installed in the vehicle. The paper analyzes the limitations of charging power resulting from the onboard charger’s power and the charging point’s power. It presents the charging time of selected electric vehicles. The second aspect that is also the subject of user concerns and discussed in this article is issues related to the safety of electric vehicles. General safety indicators of such vehicles based on Euro-NCAP tests are characterized. Attention was also paid to more detailed problems related to active and passive safety and functional safety analyses. The issue of the fire hazard of electric vehicles was discussed together with modern experiences regarding post-accident procedures in the event of fires. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

18 pages, 5159 KiB  
Article
Investigation on Seismic Behavior of a Novel Precast Shear Wall System with Different Infill Wall Constructions
by Min Sun, Sheng Zhang, Jun Yang, Youzhen Fang and Xiaochun Xu
Materials 2023, 16(23), 7343; https://doi.org/10.3390/ma16237343 - 25 Nov 2023
Cited by 1 | Viewed by 1680
Abstract
Construction industrialization addresses various challenges in the traditional construction industry, enabling building structures to conserve resources and enhance energy efficiency while reducing emissions. Precast shear walls involve the factory-based production of components, followed by transportation to a construction site for assembly. The method [...] Read more.
Construction industrialization addresses various challenges in the traditional construction industry, enabling building structures to conserve resources and enhance energy efficiency while reducing emissions. Precast shear walls involve the factory-based production of components, followed by transportation to a construction site for assembly. The method of connecting these components is crucial for precast concrete shear wall systems. Common connection methods include lap-spliced connections, post-tensioned connections, welded connections, bolted connections, and sleeve connections. However, challenges such as construction precision and technology proficiency have limited their application. In response, a novel precast concrete shear wall system utilizing angle steel connectors has been proposed. These angle steel connectors enhance the shear resistance of horizontal joints between precast concrete shear walls and the foundation, providing provisional support for specimen positioning and installation. Presently, the seismic performance of this innovative precast shear wall system under the combined actions of cyclic horizontal loads and axial pressure or tension has been extensively investigated. In practical engineering applications, precast concrete shear wall systems are often accompanied by infill walls. However, there is limited research on the seismic performance of precast concrete shear wall systems with infill walls. To address this gap, this study designed and fabricated two novel precast concrete shear walls with different infill wall constructions. One specimen featured an infill wall composed of a single wall panel, while the other had an infill wall consisting of two panels. Pseudo-static tests were conducted on both specimens under constant axial compression. Subsequently, the seismic performance and force mechanism of the two specimens were compared with the novel precast concrete shear walls without infill walls. The test results demonstrated that the specimen with two infill wall panels exhibited superior overall performance compared to the one with a single continuous infill wall panel. Furthermore, it was observed that, during the loading process, the edge columns of specimens with infill walls provided the majority of the increased load-bearing capacity, while the infill walls made a limited contribution to the overall load-bearing capacity of the structures. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

26 pages, 3742 KiB  
Article
Design Recommendations for Concrete Pryout Capacity of Headed Steel Studs and Post-Installed Anchors
by Khalil Jebara, Akanshu Sharma and Joško Ožbolt
CivilEng 2023, 4(3), 782-807; https://doi.org/10.3390/civileng4030044 - 10 Jul 2023
Viewed by 3724
Abstract
Current formulas to assess the shear capacity of headed steel stud anchors and post-installed (PI) anchors in case of pryout failure (sometimes known as pull-rear failure) have been derived either based on the indirect-tension resistance model or are fully empirical based on push-out [...] Read more.
Current formulas to assess the shear capacity of headed steel stud anchors and post-installed (PI) anchors in case of pryout failure (sometimes known as pull-rear failure) have been derived either based on the indirect-tension resistance model or are fully empirical based on push-out test results. In both cases, the predicted pryout capacity is clearly conservative and underestimates the true pryout capacity of anchorages, especially for stiff anchors with low embedment-to-diameter ratios (hef/d < 4.5). This paper proposes an empirical and a semi-empirical formula to predict the concrete pryout capacity of headed steel studs and PI anchors. They were derived based on an improved indirect-tension model which accounts for the stud diameter and the stud spacing in a group of anchors. Furthermore, a database of 214 monotonic shear tests from the literature, including own tests (push-off and horizontally shear tests), is reevaluated and compared to the provisions of EN1992-4. The scope of this assessment proposal includes single and group of headed steel studs and PI anchors attached to a stiff steel plate as well as shear connectors in composite structures without metal deck embedded in normal-weight concrete. Full article
(This article belongs to the Special Issue Connections in Concrete Volume 2)
Show Figures

Figure 1

15 pages, 6875 KiB  
Article
Protection and Installation of FBG Strain Sensor in Deep Boreholes for Subsurface Faults Behavior Monitoring
by Sang-Jin Choi, Kwon Gyu Park, Chan Park and Changhyun Lee
Sensors 2021, 21(15), 5170; https://doi.org/10.3390/s21155170 - 30 Jul 2021
Cited by 11 | Viewed by 3934
Abstract
Fiber optic sensors are gradually replacing electrical sensors in geotechnical applications owing to their immunity to electrical interference, durability, and cost-effectiveness. However, additional protective measures are required to prevent loss of functionality due to damage to the sensors, cables, or connection parts (splices [...] Read more.
Fiber optic sensors are gradually replacing electrical sensors in geotechnical applications owing to their immunity to electrical interference, durability, and cost-effectiveness. However, additional protective measures are required to prevent loss of functionality due to damage to the sensors, cables, or connection parts (splices and/or connectors) during installation and completion processes in borehole applications. We introduce two cases of installing fiber Bragg grating (FBG) strain sensors in 1 km boreholes to monitor the behavior of deep subsurface faults. We present our fiber-reinforced plastic (FRP) forming schemes to protect sensors and splices. We also present uniaxial load test and post-completion monitoring results for assessing the effects and performance of the protective measures. The uniaxial load test and post-completion monitoring show that FBG sensors are well protected by FRP forming without significant impact on sensor performance itself and that they are successfully installed in deep boreholes. In addition to summarizing our learning from experiences, we also suggest several points for consideration to improve the applicability of FBG sensors in borehole environment of the geotechnical field. Full article
(This article belongs to the Special Issue Sensors and Measurements in Geotechnical Engineering)
Show Figures

Figure 1

Back to TopTop