Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (180)

Search Parameters:
Keywords = poly-3,4-ethylenedioxythiophene film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2737 KB  
Article
Polymer Solar Cells Using Au-Incorporated V2Ox as the Hole Transport Layer
by Yu-Shyan Lin and Shiun-Ming Shiu
Processes 2025, 13(12), 4070; https://doi.org/10.3390/pr13124070 - 17 Dec 2025
Viewed by 230
Abstract
This study investigates the feasibility of adding gold nanoparticles (Au-NPs) to vanadium oxide (V2Ox) serving the hole transport layer (HTL) material oin polymer solar cells to enhance cell performance. The first part of this study used Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as [...] Read more.
This study investigates the feasibility of adding gold nanoparticles (Au-NPs) to vanadium oxide (V2Ox) serving the hole transport layer (HTL) material oin polymer solar cells to enhance cell performance. The first part of this study used Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a baseline and optimized the parameters of this HTL material. Then, the V2Ox was substituted as the HTL material, and its parameters were optimized again. The second part involved incorporating an aqueous solution of gold nanoparticles (Au-NPs) with an average particle size of approximately 80 nm into V2Ox. Due to the excitation of localized surface plasmon resonance (LSPR) by Au-NPs, the addition of Au-NPs to the V2Ox layer can enhance the absorption efficiency of the P3HT:PCBM blended film. Therefore, compared with V2Ox alone, the solar cells with Au-NPs incorporated into the V2O5 hole transport layer demonstrate improved power conversion efficiency (PCE). Full article
(This article belongs to the Special Issue Development and Characterization of Advanced Polymer Nanocomposites)
Show Figures

Figure 1

10 pages, 2287 KB  
Article
Electrically Tunable Metalens Based on PEDOT:PSS
by Miao Zhang, Dizhi Sun, Shiqi Zhang, Liangui Deng, Jiaxin Li and Jianguo Guan
Micromachines 2025, 16(12), 1341; https://doi.org/10.3390/mi16121341 - 27 Nov 2025
Viewed by 546
Abstract
Tunable metalenses are planar optical elements that hold immense potential in the field of integrated optics, enabling reconfigurable focusing without the bulkiness associated with traditional lenses. This study proposes an electrically tunable metalens which integrates poly(3,4-ethylenedioxythiophene)–polystyrenesulfonate (PEDOT:PSS) with a metasurface. The focal length [...] Read more.
Tunable metalenses are planar optical elements that hold immense potential in the field of integrated optics, enabling reconfigurable focusing without the bulkiness associated with traditional lenses. This study proposes an electrically tunable metalens which integrates poly(3,4-ethylenedioxythiophene)–polystyrenesulfonate (PEDOT:PSS) with a metasurface. The focal length is electrically controlled through electrochemical modulation of the PEDOT:PSS film thickness and deintercalation in an electrolyte. The Fresnel zone plate (FZP) design is employed to simplify the phase profile and reduce optimization complexity. More importantly, the modulated PSO algorithm is implemented to inverse-design the units and suppress inter-unit phase crosstalk. Simulation results demonstrate that the metalens achieves diffraction-limited focusing, with a zoom ratio reaching 10:1. This work provides a feasible strategy for developing high-performance dynamically tunable metalens, with promising applications in miniaturized imaging, microscopy, and integrated photonic systems. Full article
(This article belongs to the Special Issue Advances and Applications of Optical Metasurfaces and Metalens)
Show Figures

Figure 1

13 pages, 3605 KB  
Article
SWCNT/PEDOT:PSS/SA Composite Yarns with High Mechanical Strength and Flexibility via Wet Spinning for Thermoelectric Applications
by Keisuke Uchida, Yoshiyuki Shinozaki, Hiroto Nakayama, Shuya Ochiai, Yuto Nakazawa and Masayuki Takashiri
Sensors 2025, 25(19), 6202; https://doi.org/10.3390/s25196202 - 7 Oct 2025
Cited by 1 | Viewed by 867
Abstract
To fabricate thermoelectric generators (TEGs) with high mechanical strength using single-walled carbon nanotubes (SWCNTs), we combined SWCNTs, poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS), and sodium alginate (SA) to synthesize flexible SWCNT/PEDOT:PSS/SA composite yarns via wet spinning. The composite yarns were flexible and dense, with a diameter [...] Read more.
To fabricate thermoelectric generators (TEGs) with high mechanical strength using single-walled carbon nanotubes (SWCNTs), we combined SWCNTs, poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS), and sodium alginate (SA) to synthesize flexible SWCNT/PEDOT:PSS/SA composite yarns via wet spinning. The composite yarns were flexible and dense, with a diameter of approximately 290 µm. Their tensile strength and breaking strain were 151 MPa and 12.7%, respectively, which were approximately 10 and 4 times those of the SWCNT films. However, the thermoelectric properties of the composite yarns were inferior to those of the SWCNT films. The temperature distribution and output voltage of the fabricated TEG with composite yarns were measured at a heater temperature of 100 °C. The temperature difference generated by the TEG with composite yarns was approximately 75% of that generated by the TEG with SWCNT films because the composite yarn had a smaller specific surface area. The output voltage of the TEG with two composite yarns (0.21 mV) was lower than that of the TEG with two SWCNT films. However, arranging the composite yarns at a high density resulted in an output voltage exceeding that for the TEGs with SWCNT films. These findings are highly beneficial for yarn-based TEGs used in wearable sensors. Full article
(This article belongs to the Special Issue Nanotechnology Applications in Sensors Development)
Show Figures

Figure 1

16 pages, 1714 KB  
Article
Studies of Intra-Chain and Inter-Chain Charge Carrier Conduction in Acid Doped Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Thin Films
by Ayman A. A. Ismail, Henryk Bednarski and Andrzej Marcinkowski
Materials 2025, 18(19), 4569; https://doi.org/10.3390/ma18194569 - 1 Oct 2025
Viewed by 648
Abstract
Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is a conductive water-processable polymer with many important applications in organic electronics. The electrical conductivity of PEDOT:PSS layers is very diverse and can be changed by changing the processing and post-deposition conditions, e.g., by using different solvent additives, doping [...] Read more.
Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is a conductive water-processable polymer with many important applications in organic electronics. The electrical conductivity of PEDOT:PSS layers is very diverse and can be changed by changing the processing and post-deposition conditions, e.g., by using different solvent additives, doping or modifying the physical conditions of the layer deposition. Despite many years of intensive research on the relationship between the microstructure and properties of these layers, there are still gaps in our knowledge, especially with respect to the detailed understanding of the charge carrier transport mechanism in organic semiconductor thin films. In this work, we investigate the effect of acid doping of PEDOT:PSS thin films on the intra-chain and inter-chain conductivity by developing a model that treats PEDOT:PSS as a nanocomposite material. This model is based on the effective medium theory and uses the percolation theory equation for the electrical conductivity of a mixture of two materials. Here its implementation assumes that the role of the highly conductive material is attributed to the intra-chain conductivity of PEDOT and its quantitative contribution is determined based on the optical Drude–Lorentz model. While the weaker inter-chain conductivity is assumed to originate from the weakly conductive material and is determined based on electrical measurements using the van der Pauw method and coherent nanostructure-dependent analysis. Our studies show that doping with methanesulfonic acid significantly affects both types of conductivity. The intra-chain conductivity of PEDOT increases from 260 to almost 400 Scm−1. Meanwhile, the inter-chain conductivity increases by almost three orders of magnitude, reaching a critical state, i.e., exceeding the percolation threshold. The observed changes in electrical conductivity due to acid doping are attributed to the flattening of the PEDOT/PSS gel nanoparticles. In the model developed here, this flattening is accounted for by the inclusion shape factor. Full article
(This article belongs to the Special Issue Advances in Electronic and Photonic Materials)
Show Figures

Graphical abstract

40 pages, 3531 KB  
Review
Conductive Polymer Thin Films for Energy Storage and Conversion: Supercapacitors, Batteries, and Solar Cells
by Rashid Dallaev
Polymers 2025, 17(17), 2346; https://doi.org/10.3390/polym17172346 - 29 Aug 2025
Cited by 5 | Viewed by 2985
Abstract
Conductive polymer thin films have emerged as a versatile class of materials with immense potential in energy storage and conversion technologies due to their unique combination of electrical conductivity, mechanical flexibility, and tunable physicochemical properties. This review comprehensively explores the role of conductive [...] Read more.
Conductive polymer thin films have emerged as a versatile class of materials with immense potential in energy storage and conversion technologies due to their unique combination of electrical conductivity, mechanical flexibility, and tunable physicochemical properties. This review comprehensively explores the role of conductive polymer thin films in three critical energy applications: supercapacitors, batteries, and solar cells. The paper examines key polymers such as polyaniline (PANI), polypyrrole (PPy), and poly(3,4-ethylenedioxythiophene) (PEDOT), focusing on their synthesis techniques, structural modifications, and integration strategies to enhance device performance. Recent advances in film fabrication methods, including solution processing, electrochemical deposition, and layer-by-layer assembly, are discussed with regard to achieving optimized morphology, conductivity, and electrochemical stability. Furthermore, the review highlights current challenges such as scalability, long-term durability, and interfacial compatibility, while outlining future directions for the development of high-performance, sustainable energy systems based on conductive polymer thin films. Full article
(This article belongs to the Special Issue Advanced Preparation and Characterization of Polymer-Based Thin Films)
Show Figures

Graphical abstract

19 pages, 3163 KB  
Article
Hydrophobic, Durable, and Reprocessable PEDOT:PSS/PDMS-PUa/SiO2 Film with Conductive Self-Cleaning and De-Icing Functionality
by Jie Fang, Rongqing Dong, Meng Zhou, Lishan Liang, Mingna Yang, Huakun Xing, Yongluo Qiao and Shuai Chen
Coatings 2025, 15(9), 985; https://doi.org/10.3390/coatings15090985 - 23 Aug 2025
Cited by 1 | Viewed by 1600
Abstract
Poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) stands out as a renowned commercial conducting polymer composite, boasting extensive and promising applications in the realm of film electronics. In this study, we have made a concerted effort to overcome the inherent drawbacks of PEDOT:PSS films (especially, high [...] Read more.
Poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) stands out as a renowned commercial conducting polymer composite, boasting extensive and promising applications in the realm of film electronics. In this study, we have made a concerted effort to overcome the inherent drawbacks of PEDOT:PSS films (especially, high moisture absorption, mechanical damage vulnerability, insufficient substrate adhesion ability, etc.) by uniformly blending them with polydimethylsiloxane polyurea (PDMS-PUa) and silica (SiO2) nanoparticles through a feasible mechanical stirring process, which effectively harnesses the intermolecular interactions, as well as the morphological and structural characteristics, among the various components. The Si−O bonds within PDMS-PUa and the −CH3 groups attached to Si atoms significantly enhance the hydrophobicity of the composite film (as evidenced by a water contact angle of 132.89° under optimized component ratios). Meanwhile, SiO2 microscopically modifies the surface morphology, resulting in increased surface roughness. This composite film not only maintains high conductivity (1.21 S/cm, in contrast to 0.83 S/cm for the PEDOT:PSS film) but also preserves its hydrophobicity and electrical properties under rigorous conditions, including high-temperature exposure (60–200 °C), ultraviolet (UV) aging (365.0 nm, 1.32 mW/cm2), and abradability testing (2000 CW abrasive paper, drag force of approximately 0.98 N, 40 cycles). Furthermore, the film demonstrates enhanced resistance to both acidic (1 mol/L, 24 h) and alkaline (1 mol/L, 24 h) environments, along with excellent self-cleaning and de-icing capabilities (−6 °C), and satisfactory adhesion (Level 2). Notably, the dried composite film can be re-dispersed into a solution with the aid of isopropanol through simple magnetic stirring, and the sequentially coated films also exhibit good surface hydrophobicity (136.49°), equivalent to that of the pristine film. This research aims to overcome the intrinsic performance drawbacks of PEDOT:PSS-based materials, enabling them to meet the demands of complex application scenarios in the field of organic electronics while endowing them with multifunctionality. Full article
Show Figures

Graphical abstract

11 pages, 2217 KB  
Article
One-Pot Improvement of Stretchable PEDOT/PSS Alginate Conductivity for Soft Sensing Biomedical Processes
by Somayeh Zanganeh, Alberto Ranier Escobar, Hung Cao and Peter Tseng
Processes 2025, 13(7), 2173; https://doi.org/10.3390/pr13072173 - 8 Jul 2025
Viewed by 1559
Abstract
Hydrogels have immense potential in soft electronics due to their similarity to biological tissues. However, for applications in fields like tissue engineering and wearable electronics, hydrogels must obtain electrical conductivity, stretchability, and implantability. This article explores recent advancements in the development of electrically [...] Read more.
Hydrogels have immense potential in soft electronics due to their similarity to biological tissues. However, for applications in fields like tissue engineering and wearable electronics, hydrogels must obtain electrical conductivity, stretchability, and implantability. This article explores recent advancements in the development of electrically conductive hydrogel composites with high conductivity, low Young’s modulus, and remarkable stretchability. By incorporating conductive particles into hydrogels, such as poly(3,4-ethylenedioxythiophene)/poly (styrenesulfonate) (PEDOT/PSS) researchers have enhanced their conductivity. This study presents a one-pot synthesis method for creating electrically conductive hydrogel composites by combining PEDOT/PSS with alginate. The hydrogel reveals changes in chemical composition upon treatment with dimethyl sulfoxide (DMSO). Additionally, surface morphology analysis via Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) demonstrate the impact of DMSO treatment on PEDOT/PSS/alginate films. Furthermore, electrical conductivity measurements highlighted the effectiveness of the conductive hydrogels in Electromyography (EMG) and human motion detection. This study offers insights into the fabrication and characterization of stretchable, conductive hydrogels, advancing their potential for various soft sensing biomedical applications. The optimized PDOT/PSS/alginate composite under dry condition shows a conductivity of 0.098 S/cm and can be stretched without significant loss in conductivity or mechanical stability. This one-pot method provides a simple and effective way to improve the properties of conductive hydrogel-based sensors. Full article
Show Figures

Figure 1

18 pages, 23429 KB  
Article
Synthesis of PTh/PEDOT Films into FTO Substrate by Electrodeposition, for Energy Storage Systems
by Daniel Alejandro Vázquez-Loredo, Ulises Páramo-García, Luis Alejandro Macclesh Del Pino-Pérez, Nohra Violeta Gallardo-Rivas, Ricardo García-Alamilla and Diana Lucia Campa-Guevara
Condens. Matter 2025, 10(2), 26; https://doi.org/10.3390/condmat10020026 - 27 Apr 2025
Cited by 1 | Viewed by 1963
Abstract
Thin films of monomeric species polythiophene (PTh), poly-(3,4-ethylenedioxythiophene) (PEDOT), and the copolymer PTh/PEDOT were prepared through electropolymerization and deposited above fluorine-doped tin oxide (FTO) substrates. The functional groups of the monomeric species (PTh, PEDOT) and polymeric species (PTh/PEDOT) were characterized by Fourier-transform infrared [...] Read more.
Thin films of monomeric species polythiophene (PTh), poly-(3,4-ethylenedioxythiophene) (PEDOT), and the copolymer PTh/PEDOT were prepared through electropolymerization and deposited above fluorine-doped tin oxide (FTO) substrates. The functional groups of the monomeric species (PTh, PEDOT) and polymeric species (PTh/PEDOT) were characterized by Fourier-transform infrared spectroscopy, while morphological properties were evaluated using scanning electron microscopy, optical microscopy, and atomic force microscopy. The analysis showed that monomers films exhibited less material deposition; otherwise, the copolymer PTh/PEDOT showed better deposition on substrate. In addition, the electrochemical characterization showed that the materials that resulted from copolymerization presented an improvement in electrochemical properties relating to monomer properties. The effect of overoxidation of the monomers applied during the electropolymerization process is also known. Full article
(This article belongs to the Section Surface and Interfaces)
Show Figures

Figure 1

17 pages, 7253 KB  
Article
Electrochromic Fabrics with Horizontal Patterning, Enhanced Strength, Comfort, High-Temperature Protection, and Long Coloring Retention Properties for Adaptive Camouflage
by Jingjing Wang, Haiting Shi, Jixian Gong, Geng Tian and Jinbo Yao
Molecules 2025, 30(6), 1249; https://doi.org/10.3390/molecules30061249 - 11 Mar 2025
Viewed by 3302
Abstract
Electrochromic fabrics (ECFs) can be applied to wearable displays and military camouflage clothing, and they have great potential in developing wearable products. Current ECFs are often bulky, involve complicated processes, and have high production costs. In this study, we report a novel strategy [...] Read more.
Electrochromic fabrics (ECFs) can be applied to wearable displays and military camouflage clothing, and they have great potential in developing wearable products. Current ECFs are often bulky, involve complicated processes, and have high production costs. In this study, we report a novel strategy for preparing electrochromic fabrics that require only a three-layer structure: cotton fabric as the substrate, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the electrochromic layer and the electrodes, and an ion-conducting film (ICF) bonded to the fabric by hot pressing. Compared with conventional ECFs, this method does not require the extra preparation of electrode layers on the fabric, as these layers affect the color-changing effect. Hot pressing eliminates the need for a complex sealing process and is more suitable for fabrics with poor wicking effects, which increases the method’s applicability. Cotton fabrics offer the value of biodegradability and are more environmentally friendly. Meanwhile, unlike carbon cloth, the fabric’s color does not interfere with the electrochromic effect. The ICF is non-liquid and can maintain the dryness of the fabric. Additionally, the ICF provides high-temperature protection up to 150 °C. The ECFs exhibit exceptional thinness at 161 µm and a lightweight construction with a 0.03 g/cm2 weight. Furthermore, the ECFs exhibit a relatively long sustain time of 115 min without voltage, demonstrating impressive performance. Improved peel strength to 7.11 N is achieved through an improved hot-pressing process. The development strategy for ECFs can also be applied to other electrochromic substances, potentially advancing intelligent applications such as wearable fabrics and military camouflage while promoting rapid progress in electrochromic fabrics. Full article
Show Figures

Figure 1

17 pages, 7967 KB  
Article
TiO2-Nanobelt-Enhanced, Phosphorescent, Organic Light-Emitting Diodes
by Sushanta Lenka, Shivam Gupta, Bushra Rehman, Deepak Kumar Dubey, Hsuan-Min Wang, Ankit Sharma, Jayachandran Jayakumar, Ching-Wu Wang, Nyan-Hwa Tai, Saulius Grigalevicius and Jwo-Huei Jou
Nanomaterials 2025, 15(3), 199; https://doi.org/10.3390/nano15030199 - 27 Jan 2025
Cited by 3 | Viewed by 2261
Abstract
This study investigates the enhancement of organic light-emitting diode (OLED) performance through the integration of titanium dioxide (TiO2) nanocomposites within a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS) matrix. The nanocomposite films were prepared using a controlled dispersion of TiO2 belts into the [...] Read more.
This study investigates the enhancement of organic light-emitting diode (OLED) performance through the integration of titanium dioxide (TiO2) nanocomposites within a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS) matrix. The nanocomposite films were prepared using a controlled dispersion of TiO2 belts into the PEDOT/PSS solution, followed by their incorporation into the OLED hole-injection layer (HIL). Our results demonstrate a significant improvement in device efficiency, attributed to the optimized charge carrier mobility and reduced recombination losses, which were achieved by the presence of TiO2. The nanocomposite hybrid layer enhances light emission efficiency due to its role in modifying surface roughness, promoting better film uniformity, and improving hole injection. The incorporation of TiO2 nanobelts into PEDOT/PSS led to significant efficiency enhancements, yielding a 39% increase in PEmax, a 37% improvement in CEmax, and a remarkable 72% rise in EQEmax compared to the undoped counterpart. This research provides insight into the potential of TiO2 nanocomposites in advancing OLED technology for next-generation display and lighting applications. Full article
Show Figures

Figure 1

16 pages, 9250 KB  
Article
Improving the Electrochemical and Electrochromic Properties of Copolymerized 3,4-Ethylenedioxythiophene with Pyrene
by Xiang Wang, Haiyun Jiang, Muling Gan, Jun Zhang, Ruomei Wu, Weili Zhang, Ziyi Wang, Minxi Guo and Yangfan Mu
Polymers 2025, 17(1), 69; https://doi.org/10.3390/polym17010069 - 30 Dec 2024
Cited by 4 | Viewed by 1319
Abstract
Pyrene (Pr) was used to improve the electrochemical and electrochromic properties of polythiophene copolymerized with 3,4-ethylenedioxythiophene (EDOT). The corresponding product, poly(3,4-ethylenedioxythiophene-co-Pyrene) (P(EDOT-co-Pr)), was successfully synthesized by electrochemical polymerization with different monomer concentrations in propylene carbonate solution containing 0.1 M lithium perchlorate (LiClO4 [...] Read more.
Pyrene (Pr) was used to improve the electrochemical and electrochromic properties of polythiophene copolymerized with 3,4-ethylenedioxythiophene (EDOT). The corresponding product, poly(3,4-ethylenedioxythiophene-co-Pyrene) (P(EDOT-co-Pr)), was successfully synthesized by electrochemical polymerization with different monomer concentrations in propylene carbonate solution containing 0.1 M lithium perchlorate (LiClO4/PC (0.1 M)). The homopolymer and copolymer films were analyzed by Fourier transform infrared spectroscopy (FT-IR), color-coordinate and colorimetric methods, cyclic voltammetry (CV), spectroelectrochemistry (SEC), and UV–visible spectroscopy (UV-Vis). Homopolymer poly(3,4-ethylenedioxythiophene) (PEDOT) and the P(EDOT-co-Pr) copolymer were investigated, which included examining their colorimetric, electrochemical, and electrochromic characteristics. The color shifts resulting from redox reactions of the polymers were also observed. The copolymers with different monomer concentrations achieved multicolor shifts, such as light purple, dark blue, dark red, green, and earthy yellow. Moreover, P(EDOT-co-Pr) had a small optical bandgap (1.74–1.83 eV), excellent optical contrast (31.68–45.96%), and high coloring efficiency (350–507 cm2 C−1). In particular, P(EDOT1-co-Pr3) exhibited outstanding cycling stability, retaining 91% of its initial optical contrast after cycling for 10,000 s, and it is expected to be a promising candidate copolymer for electrochromic applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 3337 KB  
Article
Development of Composite Semiconductor Films Based on Organotin Complexes Doped with Cobalt Porphine for Applications in Organic Diodes
by María Elena Sánchez Vergara, José Miguel Rocha Flores, Luis Alberto Cantera-Cantera, Ricardo Ballinas-Indilí, Alejandro Flores Huerta and Cecilio Álvarez-Toledano
Materials 2025, 18(1), 45; https://doi.org/10.3390/ma18010045 - 26 Dec 2024
Cited by 1 | Viewed by 1238
Abstract
In this work, we present the green synthesis of complex AE derived from β-hidroxymethylidene indanones by ultrasound, which allowed for the obtaining of compounds in a shorter time and with good yields. These organotin complexes were then doped with cobalt porphine [...] Read more.
In this work, we present the green synthesis of complex AE derived from β-hidroxymethylidene indanones by ultrasound, which allowed for the obtaining of compounds in a shorter time and with good yields. These organotin complexes were then doped with cobalt porphine and incorporated into a poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) matrix to manufacture composite semiconductor films. The semiconductor films were characterized through atomic force microscopy, examining their topography, Knoop hardness (around 17 HK), and tensile strength, which varied from 5 × 10−4 to 7 × 10−2 Pa. The optical behavior was evaluated, revealing that the changes in these characteristics are related to the type of organotin complex present in the composite film: the transmittance ranged from 77% to 86%, while the reflectance varied from 13% to 17%. The band gap, calculated using the Kubelka–Munk function F(KM), was approximately 3.7 ± 0.19 eV for all the semiconductor films. Finally, we assessed the electrical behavior of the composite films through current–voltage (I–V) measurements under different lighting conditions. The I–V curves demonstrated that they share a saturation current density of 3.46 mA/mm2. However, they differ in their conduction rates within the ohmic regimen. These composite films’ optical and electrical properties suggest their potential use in developing electronic devices like organic diodes. Full article
(This article belongs to the Special Issue Advances in Materials Science for Engineering Applications)
Show Figures

Figure 1

17 pages, 5810 KB  
Article
Near-Infrared Responsive Composites of Poly-3,4-Ethylenedioxythiophene with Fullerene Derivatives
by Oxana Gribkova, Varvara Kabanova, Ildar Sayarov, Alexander Nekrasov and Alexey Tameev
Polymers 2025, 17(1), 14; https://doi.org/10.3390/polym17010014 - 25 Dec 2024
Viewed by 1127
Abstract
Electrochemical polymerization of 3,4-ethylenedioxythiophene in the presence of water-soluble fullerene derivatives was investigated. The electronic structure, morphology, spectroelectrochemical, electrochemical properties and near-IR photoconductivity of composite films of poly(3,4-ethylenedioxythiophene) with fullerenes were studied for the first time. It was shown that fullerene with hydroxyl [...] Read more.
Electrochemical polymerization of 3,4-ethylenedioxythiophene in the presence of water-soluble fullerene derivatives was investigated. The electronic structure, morphology, spectroelectrochemical, electrochemical properties and near-IR photoconductivity of composite films of poly(3,4-ethylenedioxythiophene) with fullerenes were studied for the first time. It was shown that fullerene with hydroxyl groups creates favorable conditions for the formation of PEDOT chains and more effectively compensates for the positive charges on the PEDOT chains. The near-IR photoconductivity results from the generation of charge carriers due to electron transfer from the photoexcited PEDOT molecule to the fullerene acceptor. Full article
(This article belongs to the Special Issue Polymers/Their Hybrid Materials for Optoelectronic Applications)
Show Figures

Figure 1

13 pages, 3055 KB  
Article
Enhanced Photovoltaic Performance of Poly(3,4-Ethylenedioxythiophene)Poly(N-Alkylcarbazole) Copolymer-Based Counter Electrode in Dye-Sensitized Solar Cells
by Sherif Dei Bukari, Aliya Yelshibay, Bakhytzhan Baptayev and Mannix P. Balanay
Polymers 2024, 16(20), 2941; https://doi.org/10.3390/polym16202941 - 20 Oct 2024
Cited by 1 | Viewed by 1631
Abstract
Conducting polymers are emerging as promising alternatives to rare and expensive platinum for counter electrodes in dye-sensitized solar cells; due to their ease of synthesis, they can be chemically tuned and are suitable for roll-to-roll production. Among these, poly (3,4-ethylenedioxythiophene) (PEDOT)-based counter electrodes [...] Read more.
Conducting polymers are emerging as promising alternatives to rare and expensive platinum for counter electrodes in dye-sensitized solar cells; due to their ease of synthesis, they can be chemically tuned and are suitable for roll-to-roll production. Among these, poly (3,4-ethylenedioxythiophene) (PEDOT)-based counter electrodes have shown leading photovoltaic performance. However, certain conductivity issues remain that affect the effectiveness of these counter electrodes. In this study, we present an electropolymerized PEDOT and poly(N-alkylated-carbazole) copolymer as an efficient electrocatalyst for the reduction in I3 in dye-sensitized solar cells. Copolymerization with N-alkylated carbazoles significantly increases the conductivity of the polymer film and facilitates rapid charge transport at the interface between the polymer electrode and the electrolyte. The length of the alkyl substituents also plays a crucial role in this improvement. Electrochemical analysis showed a reduction in charge transport resistance from 3.31 Ω·cm2 for PEDOT to 2.26 Ω·cm2 for the PEDOT:poly(N-octylcarbazole) copolymer, which is almost half the resistance of a platinum-based counter electrode (4.12 Ω·cm2). Photovoltaic measurements showed that the solar cell with the PEDOT:poly(N-octylcarbazole) counter electrode achieved an efficiency of 8.88%, outperforming both PEDOT (7.90%) and platinum-based devices (7.57%). Full article
Show Figures

Graphical abstract

9 pages, 2316 KB  
Article
Highly Efficient Organic/Silicon Hybrid Solar Cells with a MoO3 Capping Layer
by Jiahui Chen, Zhangbo Lu, Xiaoting Wang, Yuner Luo, Yun Ma, Gang Lou, Dan Chi and Shihua Huang
Nanomaterials 2024, 14(20), 1630; https://doi.org/10.3390/nano14201630 - 11 Oct 2024
Cited by 3 | Viewed by 2338
Abstract
Organic/Si hybrid solar cells have attracted considerable attention for their uncomplicated fabrication process and superior device efficiency, making them a promising candidate for sustainable energy applications. However, the efficient collection and separation of charge carriers at the organic/Si heterojunction interface are primarily hindered [...] Read more.
Organic/Si hybrid solar cells have attracted considerable attention for their uncomplicated fabrication process and superior device efficiency, making them a promising candidate for sustainable energy applications. However, the efficient collection and separation of charge carriers at the organic/Si heterojunction interface are primarily hindered by the inadequate work function of poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS). Here, the application of a high-work-function MoO3 film onto the n-Si/PEDOT:PSS surface leads to a notable enhancement in the device’s built-in potential. This enhancement results in the creation of an inversion layer near the n-Si surface and facilitates charge separation at the interface. Simultaneously, it inhibits charge recombination at the heterojunction interface. As a result, the champion PEDOT:PSS/Si solar cell, which incorporates a MoO3 interface layer, demonstrates an efficiency of 16.0% and achieves a high fill factor of 80.8%. These findings provide a straightforward and promising strategy for promoting the collection and transmission of charge carriers at the interface of photovoltaic devices. Full article
(This article belongs to the Special Issue Low-Dimensional Perovskite Materials and Devices)
Show Figures

Figure 1

Back to TopTop