Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = polarized optical (POM) image

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 16528 KiB  
Article
Mortars in the Archaeological Site of Hierapolis of Phrygia (Denizli, Turkey) from Imperial to Byzantine Age
by Matteo Maria Niccolò Franceschini, Sara Calandra, Silvia Vettori, Tommaso Ismaelli, Giuseppe Scardozzi, Maria Piera Caggia and Emma Cantisani
Minerals 2024, 14(11), 1143; https://doi.org/10.3390/min14111143 - 11 Nov 2024
Viewed by 1480
Abstract
Hierapolis of Phrygia, an archaeological site in southwestern Turkey, has been a UNESCO World Heritage Site since 1988. During archaeological campaigns, 71 mortar samples from public buildings were collected, dating from the Julio-Claudian to the Middle Byzantine period. The samples were analyzed using [...] Read more.
Hierapolis of Phrygia, an archaeological site in southwestern Turkey, has been a UNESCO World Heritage Site since 1988. During archaeological campaigns, 71 mortar samples from public buildings were collected, dating from the Julio-Claudian to the Middle Byzantine period. The samples were analyzed using a multi-analytical approach including polarized optical microscopy (POM), digital image analysis (DIA), X-ray powder diffraction (XRPD) and SEM–EDS to trace the raw materials and understand the evolution of mortar composition and technology over time. During the Roman period, travertine and marble were commonly used in binder production, while marble dominated in the Byzantine period. The aggregates come mainly from sands of the Lycian Nappe and Menderes Massif, with carbonate and silicate rock fragments. Variations in composition, average size and circularity suggest changes in raw material sources in both Roman and Byzantine periods. Cocciopesto mortar was used in water-related structures from the Flavian to the Severan period, but, in the Byzantine period, it also appeared in non-hydraulic contexts. Straw became a common organic additive in Byzantine renders, marking a shift from the exclusively inorganic aggregates of Roman renders. This study illustrates the evolving construction technologies and material sources used throughout the city’s history. Full article
(This article belongs to the Special Issue The Significance of Applied Mineralogy in Archaeometry)
Show Figures

Figure 1

10 pages, 2661 KiB  
Article
Distinguishing the Focal-Conic Fan Texture of Smectic A from the Focal-Conic Fan Texture of Smectic B
by Natalia Osiecka-Drewniak, Zbigniew Galewski and Ewa Juszyńska-Gałązka
Crystals 2023, 13(8), 1187; https://doi.org/10.3390/cryst13081187 - 30 Jul 2023
Cited by 9 | Viewed by 2026
Abstract
This publication presents methods of distinguishing the focal texture of the conical smectic phase A (SmA) and the crystalline smectic B phase (CrB). Most often, characteristic transition bars are observed in polarized light at the temperature point of the SmA–CrB phase transition. TOApy [...] Read more.
This publication presents methods of distinguishing the focal texture of the conical smectic phase A (SmA) and the crystalline smectic B phase (CrB). Most often, characteristic transition bars are observed in polarized light at the temperature point of the SmA–CrB phase transition. TOApy software transforms each image from a series of images recorded during POM observation to a function of light intensity versus temperature. Thermo-optical analysis is a powerful quantitative tool to notice this phase transition, but it has some limitations. The other applied method, the local binary pattern (LBP) algorithm, with high probability, detects differences between the textures of the conical focal fan of the SmA and CrB phases. The LBP algorithm is an efficient tool for texture classification. Full article
Show Figures

Figure 1

19 pages, 20330 KiB  
Article
Fractal Analysis of Four Xerogels Based on TEGylated Phenothiazine and Chitosan
by Maria-Alexandra Paun, Mihai-Virgil Nichita, Vladimir-Alexandru Paun and Viorel-Puiu Paun
Gels 2023, 9(6), 435; https://doi.org/10.3390/gels9060435 - 25 May 2023
Cited by 3 | Viewed by 1469
Abstract
The present article describes novel massive materials (in the solid phase) based on TEGylated phenothiazine and chitosan that possess great capability to recover mercury ions from constituent aqueous solutions. These were produced by chitosan hydrogelation accompanied by formyl subsidiary item of TEGylated phenothiazine, [...] Read more.
The present article describes novel massive materials (in the solid phase) based on TEGylated phenothiazine and chitosan that possess great capability to recover mercury ions from constituent aqueous solutions. These were produced by chitosan hydrogelation accompanied by formyl subsidiary item of TEGylated phenothiazine, attended by lyophilization. The delineation and structure description of the obtained material or supramolecular assembly were realized by FTIR (Fourier transform infrared) spectroscopy, X-ray diffraction, and POM (Polarized Light Optical Microscopy). The morphology of their texture was kept under observation by SEM (Scanning Electron Microscopy). The obtained SEM images were evaluated by fractal analysis. The fractal parameters of interest were calculated, including the fractal dimension and lacunarity. Full article
Show Figures

Figure 1

13 pages, 3823 KiB  
Article
Quantitative Biosensing Based on a Liquid Crystal Marginally Aligned by the PVA/DMOAP Composite for Optical Signal Amplification
by Tsung-Keng Chang, Mon-Juan Lee and Wei Lee
Biosensors 2022, 12(4), 218; https://doi.org/10.3390/bios12040218 - 7 Apr 2022
Cited by 13 | Viewed by 3027
Abstract
The working principle for a liquid crystal (LC)-based biosensor relies on the disturbance in the orderly aligned LC molecules induced by analytes at the LC-aqueous or LC-solid interface to produce optical signals that can be typically observed under a polarizing optical microscope (POM). [...] Read more.
The working principle for a liquid crystal (LC)-based biosensor relies on the disturbance in the orderly aligned LC molecules induced by analytes at the LC-aqueous or LC-solid interface to produce optical signals that can be typically observed under a polarizing optical microscope (POM). Our previous studies demonstrate that such optical response can be enhanced by imposing a weak electric field on LCs so that they are readily tilted from the homeotropic alignment in response to lower concentrations of analytes at the LC-glass interface. In this study, an alternative approach toward signal amplification is proposed by taking advantage of the marginally tilted alignment configuration without applying an electric field. The surface of glass substrates was modified with a binary aligning agent of poly(vinyl alcohol) (PVA) and dimethyloctadecyl[3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP), in which the amount of PVA was fine-tuned so that the interfacing LC molecules were slightly tilted but remained virtually homeotropically aligned to yield no light leakage under the POM in the absence of an analyte. Two nematic LCs, E7 and 5CB, were each sandwiched between two parallel glass substrates coated with the PVA/DMOAP composite for the detection of bovine serum albumin (BSA), a model protein, and cortisol, a small-molecule steroid hormone. Through image analysis of the optical appearance of E7 observed under the POM, a limit of detection (LOD) of 2.5 × 10−8 μg/mL for BSA and that of 3 × 10−6 μg/mL for cortisol were deduced. Both values are significantly lower than that obtained with only DMOAP as the alignment layers, which correspond to signal amplification of more than six orders of magnitude. The new approach for signal amplification reported in this work enables analytes of a wide range of molecular weights to be detected with high sensitivity. Full article
(This article belongs to the Special Issue Frontiers in Liquid Crystal-Based Biosensors)
Show Figures

Figure 1

13 pages, 5650 KiB  
Article
Correlation between Scratch Behavior and Tensile Properties in Injection Molded and Extruded Polymers
by Jasmina Germann, Timo Bensing and Martin Moneke
Polymers 2022, 14(5), 1016; https://doi.org/10.3390/polym14051016 - 3 Mar 2022
Cited by 10 | Viewed by 3207
Abstract
This study investigates the validity and applicability of the correlation between scratch and tensile properties for extruded polymer strands. The mechanical properties could be predicted for extruded samples, which allows skipping the step of injection molding and therefore enables a faster material development. [...] Read more.
This study investigates the validity and applicability of the correlation between scratch and tensile properties for extruded polymer strands. The mechanical properties could be predicted for extruded samples, which allows skipping the step of injection molding and therefore enables a faster material development. Extruded polymer strands and tensile test specimens out of PMMA, PS, POM, PP and PE have been investigated. A correlation of the Young’s modulus and the elastic deformation as well as a correlation of the yield stress and the plastic deformation during scratching is given for both flat molded and cylindrical extruded specimens. SEM images of the scratch grooves are used to analyze the scratch deformation mechanism. The deformation mechanism correlates well to the variation coefficient of the indentation depth. Polarized light microscopy of thin cross sections of both types of specimens provides information about skin layer thickness and morphology. However, the optical analysis could not provide an explanation for the different levels of the indentation depth in the two specimen types. Further investigations should include a study of differences in process induced morphology and the effect of two layers with different mechanical properties, i.e., skin and center, on the stress and strain fields underneath the scratch. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

36 pages, 4908 KiB  
Review
Development and Application of Liquid Crystals as Stimuli-Responsive Sensors
by Sulayman A. Oladepo
Molecules 2022, 27(4), 1453; https://doi.org/10.3390/molecules27041453 - 21 Feb 2022
Cited by 34 | Viewed by 6242
Abstract
This focused review presents various approaches or formats in which liquid crystals (LCs) have been used as stimuli-responsive sensors. In these sensors, the LC molecules adopt some well-defined arrangement based on the sensor composition and the chemistry of the system. The sensor usually [...] Read more.
This focused review presents various approaches or formats in which liquid crystals (LCs) have been used as stimuli-responsive sensors. In these sensors, the LC molecules adopt some well-defined arrangement based on the sensor composition and the chemistry of the system. The sensor usually consists of a molecule or functionality in the system that engages in some form of specific interaction with the analyte of interest. The presence of analyte brings about the specific interaction, which then triggers an orientational transition of the LC molecules, which is optically discernible via a polarized optical image that shows up as dark or bright, depending on the orientation of the LC molecules in the system (usually a homeotropic or planar arrangement). The various applications of LCs as biosensors for glucose, protein and peptide detection, biomarkers, drug molecules and metabolites are extensively reviewed. The review also presents applications of LC-based sensors in the detection of heavy metals, anionic species, gases, volatile organic compounds (VOCs), toxic substances and in pH monitoring. Additionally discussed are the various ways in which LCs have been used in the field of material science. Specific attention has been given to the sensing mechanism of each sensor and it is important to note that in all cases, LC-based sensing involves some form of orientational transition of the LC molecules in the presence of a given analyte. Finally, the review concludes by giving future perspectives on LC-based sensors. Full article
(This article belongs to the Special Issue Current Advances in Liquid Crystals II)
Show Figures

Figure 1

14 pages, 3321 KiB  
Article
Solution Blowing Spinning Technology towards Green Development of Urea Sensor Nanofibers Immobilized with Hydrazone Probe
by Mohamed H. El-Newehy, Hany El-Hamshary and Waheed M. Salem
Polymers 2021, 13(4), 531; https://doi.org/10.3390/polym13040531 - 11 Feb 2021
Cited by 39 | Viewed by 3254
Abstract
Cellulose has been one of the most widespread materials due to its renewability, excellent mechanical properties, biodegradability, high absorption ability, biocompatibility and cheapness. Novel, simple and green colorimetric fibrous film sensor was developed by immobilization of urease enzyme (U) and tricyanofuran hydrazone (TCFH) [...] Read more.
Cellulose has been one of the most widespread materials due to its renewability, excellent mechanical properties, biodegradability, high absorption ability, biocompatibility and cheapness. Novel, simple and green colorimetric fibrous film sensor was developed by immobilization of urease enzyme (U) and tricyanofuran hydrazone (TCFH) molecular probe onto cellulose nanofibers (CNF). Cellulose acetate nanofibers (CANF) were firstly prepared from cellulose acetate using the simple, green and low cost solution blowing spinning technology. The produced CANF was exposed to deacetylation to introduce CNF, which was then treated with a mixture of TCFH and urease enzyme to introduce CNF-TCFH-U nanofibrous biosensor. CNF were reinforced with tricyanofuran hyrazone molecular probe and urease enzyme was encapsulated into calcium alginate biopolymer to establish a biocomposite film. This CNF-TCFH-U naked-eye sensor can be applied as a disposable urea detector. CNF demonstrated a large surface area and was utilized as a carrier for TCFH, which is the spectroscopic probe and urease is a catalyst. The biochromic CNF-TCFH-U nanofibrous biosensor responds to an aqueous medium of urea via a visible color signal changing from off-white to dark pink. The morphology of the generated CNF and CNF-TCFH-U nanofibrous films were characterized by different analytical tools, including energy-dispersive X-ray patterns (EDX), polarizing optical microscope (POM), Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). SEM images of CNF-TCFH-U nanofibers demonstrated diameters between 800 nm and 2.5 μm forming a nonwoven fabric with a homogeneous distribution of TCFH/urease-containing calcium alginate nanoparticles on the surface of CNF. The morphology of the cross-linked calcium alginate nanoparticles was also explored using transmission electron microscopy (TEM) to indicate an average diameter of 56–66 nm. The photophysical performance of the prepared CNF-TCFH-U was also studied by CIE Lab coloration parameters. The nanofibrous film biosensor displayed a relatively rapid response time (5–10 min) and a limit of detection as low as 200 ppm and as high as 1400 ppm. Tricyanofuran hydrazone is a pH-responsive disperse dye comprising a hydrazone detection group. Determination of urea occurs through a proton transfer from the hydrazone group to the generated ammonia from the reaction of urea with urease. Full article
(This article belongs to the Special Issue Cellulose Polymer Composites)
Show Figures

Graphical abstract

12 pages, 7100 KiB  
Article
Bovine Serum Albumin Protein-Based Liquid Crystal Biosensors for Optical Detection of Toxic Heavy Metals in Water
by Noor ul Amin, Humaira Masood Siddiqi, Yang Kun Lin, Zakir Hussain and Nasir Majeed
Sensors 2020, 20(1), 298; https://doi.org/10.3390/s20010298 - 5 Jan 2020
Cited by 38 | Viewed by 6703
Abstract
A new methodology involving the use of Bovine Serum Albumin (BSA) as a probe and liquid crystal (LC) as a signal reporter for the detection of heavy metal ions in water at neutral pH was developed. BSA acted as a multi-dentate ligand for [...] Read more.
A new methodology involving the use of Bovine Serum Albumin (BSA) as a probe and liquid crystal (LC) as a signal reporter for the detection of heavy metal ions in water at neutral pH was developed. BSA acted as a multi-dentate ligand for the detection of multiple metal ions. The LC sensor was fabricated by immobilizing 3 µg mL−1 BSA solution on dimethyloctadecyl-[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP)-coated glass slides. In the absence of heavy metal ions, a dark optical image was observed, while in their presence, a dark optical image turned to bright. The optical response was characterized by using a polarized optical microscope (POM). The BSA based LC sensor selectively detected toxic metal ions as compared to s block metal ions and ammonium ions in water. Moreover, the limit of detection was found to be very low (i.e., 1 nM) for the developed new biosensor in comparison to reported biosensors. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

6 pages, 1572 KiB  
Communication
Investigations on Novel Ternary Green Polymer Composite
by Ting-Chia Hsu, Li-Ting Lee and Xin-Yun Wu
Processes 2020, 8(1), 31; https://doi.org/10.3390/pr8010031 - 27 Dec 2019
Cited by 2 | Viewed by 2808
Abstract
In this study, the novel ternary green polymer composites of poly(l-lactic acid) (PLLA)/poly(ethylene adipate)/hexagonal boron nitride (PLLA/PEA/h-BN) were synthesized and prepared. The crystallization rate of the biodegradable polymer PLLA in the composite was significantly increased with the addition of PEA and [...] Read more.
In this study, the novel ternary green polymer composites of poly(l-lactic acid) (PLLA)/poly(ethylene adipate)/hexagonal boron nitride (PLLA/PEA/h-BN) were synthesized and prepared. The crystallization rate of the biodegradable polymer PLLA in the composite was significantly increased with the addition of PEA and functional h-BN. In ternary PLLA/PEA/h-BN composites, PEA can be used as a plasticizer, while h-BN is a functional nucleation agent for PLLA. The analysis of the isothermal crystallization kinetics by the Avrami equation shows that the rate constant k of the ternary PLLA/PEA/h-BN composite represents the highest value, indicating the highest crystallization in the ternary composite. Adding h-BN in the composite can further increase the k value and increase the crystallization rate. Polarized optical microscopy (POM) images reveal that h-BN is an effective nucleation agent that increases the nucleation density of composites. Analysis of wide-angle X-ray diffraction (WAXD) further confirmed that the crystalline structures of PLLA were unchanged by the addition of PEA and h-BN. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show that the h-BN particles are uniformly distributed in the composite. The distribution of h-BN having a particle size of a few hundred nm causes an effective nucleation effect and promotes the crystallization of the ternary composites. Full article
(This article belongs to the Special Issue Green Synthesis Processes of Polymers & Composites)
Show Figures

Figure 1

17 pages, 6193 KiB  
Article
Influence of TiO2 Nanoparticles on Liquid Crystalline, Structural and Electrochemical Properties of (8Z)-N-(4-((Z)-(4-pentylphenylimino)methyl)benzylidene)-4-pentylbenzenamine
by Anna Różycka, Krzysztof Artur Bogdanowicz, Natalia Górska, Jakub Rysz, Monika Marzec, Agnieszka Iwan, Robert Pich and Adam Januszko
Materials 2019, 12(7), 1097; https://doi.org/10.3390/ma12071097 - 2 Apr 2019
Cited by 29 | Viewed by 3335
Abstract
Organic–inorganic hybrids based on liquid crystalline symmetrical imine (8Z)-N-(4-((Z)-(4-pentylphenylimino)methyl)benzylidene)-4-pentylbenzenamine (AZJ1) with two aliphatic chains and TiO2 nanomaterials were obtained and investigated taking into account thr crystallographic form of titanium dioxide i.e., anatase versus rutile. The type of TiO2 influences the mesomorphic [...] Read more.
Organic–inorganic hybrids based on liquid crystalline symmetrical imine (8Z)-N-(4-((Z)-(4-pentylphenylimino)methyl)benzylidene)-4-pentylbenzenamine (AZJ1) with two aliphatic chains and TiO2 nanomaterials were obtained and investigated taking into account thr crystallographic form of titanium dioxide i.e., anatase versus rutile. The type of TiO2 influences the mesomorphic properties of imine AZJ1, as observed by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM) techniques. Fourier-Transform Infrared Spectroscopy (FT-IR) was used to investigate the interactions of oxygen vacancies located on the TiO2 surface with the studied AZJ1 imine together with studying the influence of temperature. Both imine:TiO2 anatase versus rutile hybrids possessed the highest occupied molecular orbital (HOMO) levels of about −5.39 eV (AZJ1:anatase) and −5.33 eV (AZJ1:rutile) and the lowest unoccupied molecular orbital (LUMO) levels of about −2.24 eV. The presence of TiO2 in each hybrid did not strongly affect the redox properties of imine AZJ1. Organic devices with the configuration of ITO/TiO2/AZJ1 (or AZJ1:TiO2 anatase versus rutile)/Au were fabricated and investigated in the presence and absence of visible light irradiation with a light intensity of 93 mW/cm2. Finally, to analyze defects in the constructed organic devices we used thermal imaging and atomic force microscopy (AFM). The addition of TiO2 in both crystallographic forms has a positive influence on layer-forming properties that manifests itself as a very homogenous heat distribution for the whole sample. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Graphical abstract

14 pages, 6650 KiB  
Article
Silane-Treated Basalt Fiber–Reinforced Poly(butylene succinate) Biocomposites: Interfacial Crystallization and Tensile Properties
by Lin Sang, Mingyuan Zhao, Qiushi Liang and Zhiyong Wei
Polymers 2017, 9(8), 351; https://doi.org/10.3390/polym9080351 - 9 Aug 2017
Cited by 37 | Viewed by 7419
Abstract
In this work, an economical modifier silane agent—KH550—was used for surface treatment of basalt fiber. Then, a biodegradable poly(butylene succinate) (PBS)/modified basalt fiber (MBF) biocomposite was successfully developed. The effects of silane treatment and fiber mass content on crystalline structure, isothermal crystallization process [...] Read more.
In this work, an economical modifier silane agent—KH550—was used for surface treatment of basalt fiber. Then, a biodegradable poly(butylene succinate) (PBS)/modified basalt fiber (MBF) biocomposite was successfully developed. The effects of silane treatment and fiber mass content on crystalline structure, isothermal crystallization process and mechanical performance of composites were evaluated. The interfacial crystallization of PBS on the surface of MBF was investigated by using a polarized optical microscope (POM). The transcrystalline (TC) structure could be clearly observed and it grew perpendicular to the surface of MBF, which boosted the nucleation ability on PBS crystallization and the strong interfacial interaction between PBS and silane-treated basalt fiber. Under isothermal crystallization kinetics, the incorporation of basalt fiber enhanced the crystallization rate and reduced the crystallization half-time values of composites compared with that of neat PBS due to a heterogeneous nucleation effect. Furthermore, tensile results confirmed that the presence of MBF could greatly improve the tensile strength and modulus. The predicted interfacial shear strength (IFSS) suggested that an enhancement of interfacial bonding could be realized via interfacial crystallization, which was also verified by SEM images. The PBS/MBF biocomposites can be applied in many fields as a low-cost, lightweight, and biodegradable composite material. Full article
(This article belongs to the Special Issue Biodegradable and Biobased Polyesters)
Show Figures

Graphical abstract

Back to TopTop