Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = pod pepper seeds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5103 KiB  
Article
Calibration and Testing of Discrete Elemental Simulation Parameters for Pod Pepper Seeds
by Xingye Chen, Jing Bai, Xinzhong Wang, Weiquan Fang, Tianyu Hong, Nan Zang, Liangliang Fang and Gaoliang Wang
Agriculture 2024, 14(6), 831; https://doi.org/10.3390/agriculture14060831 - 26 May 2024
Cited by 11 | Viewed by 3246
Abstract
The discrete elemental parameters of pod pepper seeds were calibrated for future numerical optimization of the pod pepper seed cleaning device. The study concentrates on calibrating the intrinsic and contact parameters of pod pepper seeds utilizing the discrete element method. Compression tests were [...] Read more.
The discrete elemental parameters of pod pepper seeds were calibrated for future numerical optimization of the pod pepper seed cleaning device. The study concentrates on calibrating the intrinsic and contact parameters of pod pepper seeds utilizing the discrete element method. Compression tests were performed to ascertain intrinsic parameters such as Poisson’s ratio and the seeds’ elastic modulus. The static friction coefficient and collision restitution coefficient between the seeds and steel plates were identified through incline and free-fall tests. Plackett–Burman, steepest ascent, and Box–Behnken experiments were performed to establish a second-order regression model correlating significant parameters with the angle of repose. The optimal parameter combination, based on the measured angle of repose (32.45°), yielded static friction coefficients between seeds, rolling friction coefficients between seeds, and static friction coefficients between seeds and steel plates of 0.608, 0.018, and 0.787, respectively. The two-sample t-test of the physical and simulated repose angles yielded p > 0.05, and the relative error of the physical and simulated repose angles was 0.68%, which confirmed the reliability of the calibration parameters. The findings indicate that the calibration method for pod pepper seeds effectively informs the calibration of parameters for other irregular crops. Full article
(This article belongs to the Special Issue Applications of Data Analysis in Agriculture—2nd Edition)
Show Figures

Figure 1

26 pages, 1295 KiB  
Article
Phytochemical Profiling and Antioxidant Activities of the Most Favored Ready-to-Use Thai Curries, Pad-Ka-Proa (Spicy Basil Leaves) and Massaman
by Sunisa Siripongvutikorn, Kanyamanee Pumethakul, Chutha Takahashi Yupanqui, Vatcharee Seechamnanturakit, Preeyabhorn Detarun, Tanyarath Utaipan, Nualpun Sirinupong, Worrapanit Chansuwan, Thawien Wittaya and Rajnibhas Sukeaw Samakradhamrongthai
Foods 2024, 13(4), 582; https://doi.org/10.3390/foods13040582 - 14 Feb 2024
Cited by 3 | Viewed by 2895
Abstract
Food is one of the factors with the highest impact on human health. Today, attention is paid not only to food properties such as energy provision and palatability but also to functional aspects including phytochemical, antioxidant properties, etc. Massaman and spicy basil leaf [...] Read more.
Food is one of the factors with the highest impact on human health. Today, attention is paid not only to food properties such as energy provision and palatability but also to functional aspects including phytochemical, antioxidant properties, etc. Massaman and spicy basil leaf curries are famous Thai food dishes with a good harmony of flavor and taste, derived from multiple herbs and spices, including galangal rhizomes, chili pods, garlic bulbs, peppers, shallots, and coriander seeds, that provide an array of health benefits. The characterization of phytochemicals detected by LC-ESI-QTOF-MS/MS identified 99 components (Masaman) and 62 components (spicy basil leaf curry) such as quininic acid, hydroxycinnamic acid, luteolin, kaempferol, catechin, eugenol, betulinic acid, and gingerol. The cynaroside and luteolin-7-O-glucoside found in spicy basil leaf curry play a key role in antioxidant activities and were found at a significantly higher concentration than in Massaman curry. Phenolic and flavonoid compounds generally exhibit a bitter and astringent taste, but all the panelists scored both curries higher than 7 out of 9, confirming their acceptable flavor. Results suggest that the Massaman and spicy basil leaves contain various phytochemicals at different levels and may be further used as functional ingredients and nutraceutical products. Full article
Show Figures

Figure 1

14 pages, 2130 KiB  
Article
Occurrence of Aflatoxins and Ochratoxin A during Merkén Pepper Powder Production in Chile
by Jéssica Costa, Carla Santos, Célia Soares, Rodrigo Rodríguez, Nelson Lima and Cledir Santos
Foods 2022, 11(23), 3843; https://doi.org/10.3390/foods11233843 - 28 Nov 2022
Cited by 6 | Viewed by 2861
Abstract
Berry fruits of Capsicum annuum L. cv. “Cacho de Cabra” are used for the manufacture of a traditional pepper powder known as Merkén. In the present study, aflatoxins (AFs) and ochratoxin A (OTA) contamination in berry fruits of C. annuum was determined at [...] Read more.
Berry fruits of Capsicum annuum L. cv. “Cacho de Cabra” are used for the manufacture of a traditional pepper powder known as Merkén. In the present study, aflatoxins (AFs) and ochratoxin A (OTA) contamination in berry fruits of C. annuum was determined at harvest, drying, and smoking stages of Merkén production, in cumin and coriander seeds used as Merkén ingredients, and in the final packaged Merkén produced by local farmers. Additionally, Merkén samples from local markets in the region of La Araucanía (Chile) were also evaluated. Chromatographic analysis was based on a qualitative method. AFs and OTA were not detected on pepper pods and seeds. There was no detection of AFs and OTA on cultured Aspergillus and Penicillium strains isolated from pepper pods, cumin and coriander seeds and Merkén. The lack of AFs/OTA-producers among the isolated fungal species can explain and support the absence of contamination in pepper pods. In contrast, the AFB1 was detected in 75% of Merkén obtained from farmers and 46% of Merkén samples purchased from local markets; while OTA was detected in 100% of Merkén samples obtained from farmers and local markets. In the Merkén production chain, the harvest and post-harvest are key stages for fungal growth while the commercialization stage is highly susceptible to AFs and OTA contamination. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

13 pages, 3179 KiB  
Article
Antifungal Activity and Biochemical Response of Cuminic Acid against Phytophthora capsici Leonian
by Yong Wang, Yang Sun, Ying Zhang, Xing Zhang and Juntao Feng
Molecules 2016, 21(6), 756; https://doi.org/10.3390/molecules21060756 - 11 Jun 2016
Cited by 45 | Viewed by 7591
Abstract
Phytophthora blight of pepper caused by Phytophthora capsici Leonian is a destructive disease throughout the world. Cuminic acid, extracted from the seed of Cuminum cyminum L., belongs to the benzoic acid chemical class. In this study, the sensitivity and biochemical response of P. [...] Read more.
Phytophthora blight of pepper caused by Phytophthora capsici Leonian is a destructive disease throughout the world. Cuminic acid, extracted from the seed of Cuminum cyminum L., belongs to the benzoic acid chemical class. In this study, the sensitivity and biochemical response of P. capsici to cuminic acid was determined. The mean EC50 (50% effective concentration) values for cuminic acid in inhibiting mycelial growth and zoospore germination of the 54 studied P. capsici isolates were 14.54 ± 5.23 μg/mL and 6.97 ± 2.82 μg/mL, respectively. After treatment with cuminic acid, mycelial morphology, sporangium formation and mycelial respiration were significantly influenced; cell membrane permeability and DNA content increased markedly, but pyruvic acid content, adenosine triphosphate (ATP) content, and ATPase activity decreased compared with the untreated control. In pot experiments, cuminic acid exhibited both protective and curative activity. Importantly, POD and PAL activity of the pepper leaves increased after being treated with cuminic acid. These indicated that cuminic acid not only showed antifungal activity, but also could improve the defense capacity of the plants. All the results suggested that cuminic acid exhibits the potential to be developed as a new phytochemical fungicide, and this information increases our understanding of the mechanism of action of cuminic acid against Phytophthora capsici. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop