Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = pocket gravel beaches

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6037 KiB  
Article
Storm-Induced Evolution on an Artificial Pocket Gravel Beach: A Numerical Study with XBeach-Gravel
by Hanna Miličević, Dalibor Carević, Damjan Bujak, Goran Lončar and Andrea Tadić
J. Mar. Sci. Eng. 2025, 13(7), 1209; https://doi.org/10.3390/jmse13071209 - 22 Jun 2025
Viewed by 225
Abstract
Coarse-grained beaches consisting of gravel, pebbles, and cobbles play a crucial role in coastal protection. On the Croatian Adriatic coast, there are artificial gravel pocket beaches created for recreational and protective purposes. However, these beaches are subject to constant morphological changes due to [...] Read more.
Coarse-grained beaches consisting of gravel, pebbles, and cobbles play a crucial role in coastal protection. On the Croatian Adriatic coast, there are artificial gravel pocket beaches created for recreational and protective purposes. However, these beaches are subject to constant morphological changes due to natural forces and human intervention. This study investigates the morphodynamics of artificial gravel pocket beaches, focusing on berm formation and crest build-up processes characteristic for low to moderate wave conditions. Despite mimicking natural formations, artificial beaches require regular maintenance due to sediment shifts dominantly caused by wave action and storm surges. Structure-from-Motion (SfM) photogrammetry and UAV-based surveys were used to monitor morphological changes on the artificial gravel pocket beach Ploče (City of Rijeka). The XBeach-Gravel model, originally adapted to simulate the effects of high-energy waves, was calibrated and validated to analyze low to moderate wave dynamics on gravel pocket beaches. The calibration includes adjustments to the inertia coefficient (ci), which influences sediment transport by shear stress at the bottom; the angle of repose (ϕ), which controls avalanching and influences sediment transport on sloping beds; and the bedload transport calibration coefficient (γ), which scales the transport rates linearly. By calibrating XBeach-G for low to moderate wave conditions, this research improves the accuracy of the model for the cases of morphological responses “berm formation” and “crest build-up”. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

23 pages, 16773 KiB  
Article
Wave Runup Prediction and Alongshore Variability on a Pocket Gravel Beach under Fetch-Limited Wave Conditions
by Damjan Bujak, Suzana Ilic, Hanna Miličević and Dalibor Carević
J. Mar. Sci. Eng. 2023, 11(3), 614; https://doi.org/10.3390/jmse11030614 - 14 Mar 2023
Cited by 8 | Viewed by 3845
Abstract
Most empirical equations used for wave runup predictions have been developed from measurements at straight sandy beaches in unlimited fetch environments. While there are empirical equations to predict wave runup on gravel beaches, they have not been tested for prediction of wave runup [...] Read more.
Most empirical equations used for wave runup predictions have been developed from measurements at straight sandy beaches in unlimited fetch environments. While there are empirical equations to predict wave runup on gravel beaches, they have not been tested for prediction of wave runup on pocket gravel beaches, in limited-fetch environment, which can be found around Mediterranean. This paper addresses this lack of measurements on this type of beaches and examines the alongshore variability of wave runup. Wave runup measurements were made using video observations along 3 cross-sectional profiles on the pocket beach of Ploče, Croatia. The measurements have shown that the wave runup can vary for about 71% even around the centerline of the pocket beach. This variability is due to beach orientation and alignment of beach profiles to the prevailing wave direction, as well as difference in beach slope. Comparison of wave runup predictions from five well-known empirical equations and field measurements showed significant underprediction (up to NBIAS = −0.33) for energetic wave events, and overall high scatter (up to NRMSE = 0.38). The best performing wave runup equation was used for further refinement outside the original parameter space by including the Goda wave peakedness parameter (Qp). The newly developed empirical equation for wave runup reduced the NBIAS to 0 and the NRMSE by 31% compared to the original equation (developed equation metrics: R = 0.91, NBIAS = 0, NRMSE = 0.2, HH = 0.2 on the study site). This empirical equation can potentially be used for design of coastal structures and artificial beaches in similar environments, but further measurements are needed to test its applicability to a range of forcing and environmental conditions. Full article
Show Figures

Figure 1

38 pages, 40854 KiB  
Article
Shoreline Change from Optical and Sar Satellite Imagery at Macro-Tidal Estuarine, Cliffed Open-Coast and Gravel Pocket-Beach Environments
by Maria Victoria Paz-Delgado, Andrés Payo, Alejandro Gómez-Pazo, Anne-Laure Beck and Salvatore Savastano
J. Mar. Sci. Eng. 2022, 10(5), 561; https://doi.org/10.3390/jmse10050561 - 20 Apr 2022
Cited by 15 | Viewed by 5710
Abstract
Coasts are continually changing and remote sensing from satellite has the potential to both map and monitor coastal change at multiple scales. This study aims to assess the application of shorelines extracted from Multi-Spectral Imagery (MSI) and Synthetic Aperture Radar (SAR) from publicly [...] Read more.
Coasts are continually changing and remote sensing from satellite has the potential to both map and monitor coastal change at multiple scales. This study aims to assess the application of shorelines extracted from Multi-Spectral Imagery (MSI) and Synthetic Aperture Radar (SAR) from publicly available satellite imagery to map and capture sub-annual to inter-annual shoreline variability. This is assessed at three macro-tidal study sites along the coastline of England, United Kingdom (UK): estuarine, soft cliff environment, and gravel pocket-beach. We have assessed the accuracy of MSI-derived lines against ground truth datum tideline data and found that the satellite derived lines have the tendency to be lower (seaward) on the Digital Elevation Model than the datum-tideline. We have also compared the metric of change derived from SAR lines differentiating between ascending and descending orbits. The spatial and temporal characteristics extracted from SAR lines via Principal Component Analysis suggested that beach rotation is captured within the SAR dataset for descending orbits but not for the ascending ones in our study area. The present study contributes to our understanding of a poorly known aspect of using coastlines derived from publicly available MSI and SAR satellite missions. It outlines a quantitative approach to assess their mapping accuracy with a new non-foreshore method. This allows the assessment of variability on the metrics of change using the Open Digital Shoreline Analysis System (ODSAS) method and to extract complex spatial and temporal information using Principal Component Analysis (PCA) that is transferable to coastline evolution assessments worldwide. Full article
Show Figures

Figure 1

24 pages, 7976 KiB  
Article
Post-Nourishment Changes of an Artificial Gravel Pocket Beach Using UAV Imagery
by Andrea Tadić, Igor Ružić, Nino Krvavica and Suzana Ilić
J. Mar. Sci. Eng. 2022, 10(3), 358; https://doi.org/10.3390/jmse10030358 - 3 Mar 2022
Cited by 9 | Viewed by 2979
Abstract
Monitoring and analysis of changes in the volume and area of nourished beaches is crucial to inform any beach renourishment programme. The aim of this study is to utilise UAV surveys and SfM photogrammetry to assess the beach nourishment performance of an artificial [...] Read more.
Monitoring and analysis of changes in the volume and area of nourished beaches is crucial to inform any beach renourishment programme. The aim of this study is to utilise UAV surveys and SfM photogrammetry to assess the beach nourishment performance of an artificial gravel beach exposed to a range of external forcing, including storms. The paper presents results from nineteen UAV surveys conducted between January 2020 and January 2021 at Ploče, an artificial beach in Rijeka (Croatia). The beach was nourished twice and eleven storm events, ranging from weak to strong, were recorded during this period. The Agisoft Metashape software was used to obtain point clouds and digital elevation models (DEMs) from UAV images; Matlab and CloudCompare were used for further analysis of the DEMs. The accuracy and precision of the DEMs was assessed and uncertainty levels of ±5 cm were applied to all derived DEMs. The study provides new insights into the response of the emerged part of the beach to storms. Predictably, the largest changes were recorded after the first storm following beach nourishment. The longshore variability in the beach response to storms was identified from full 3D point clouds. Most of the lost sediment was from the east side of the beach, while the rest of the beach aligned with the predominant wave direction through cross-shore and longshore processes. Offshore/onshore sediment exchange between the lower and upper beach face on the western side manifested itself in beach profile steepening and berm formations. Overall, changes in beach volume and area were small, indicating that this artificial beach is relatively stable. The embayed layout following the natural coastal configuration appears to be effective in retaining nourished sediment on the beach. This work highlights the need to consider pocket embayed beaches in three dimensions, as traditional transect studies can overlook the three-dimensional behaviour. This study also highlighted the wider potential of UAVs and SfM for studies of high-resolution elevation changes on natural and artificial beaches, as well as for coastal monitoring of beach nourishment. Full article
(This article belongs to the Special Issue Novel Technologies and Solutions for Coastal Evolution and Management)
Show Figures

Figure 1

Back to TopTop