Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = ploughshare

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 12546 KB  
Article
Increasing Wear Resistance of Ploughshare by Electrofriction Treatment
by Zhuldyz Sagdoldina, Daryn Baizhan, Nurbol Berdimuratov, Malgorzata Rutkowska-Gorczyca, Meruert Maulet and Sanzhar Bolatov
Coatings 2024, 14(12), 1529; https://doi.org/10.3390/coatings14121529 - 4 Dec 2024
Cited by 1 | Viewed by 1821
Abstract
Surface layers of agricultural machinery working bodies are subjected to intensive abrasive wear during operation, which leads to rapid wear of equipment and reduction of its service life. To increase the wear resistance of the working surfaces of tools, the method of induction [...] Read more.
Surface layers of agricultural machinery working bodies are subjected to intensive abrasive wear during operation, which leads to rapid wear of equipment and reduction of its service life. To increase the wear resistance of the working surfaces of tools, the method of induction cladding using ‘Sormait-1’ materials is widely used. However, after coating, additional heat treatment is required, which improves physical and mechanical properties of the material and increases its durability. When using electrofriction technology (EFT) hardening, the surface of the parts is subjected to melting under the influence of electric arcs, which affects the surface characteristics of the coatings. In this work, two types of surface treatment of L53 steel were investigated: induction cladding using ‘Sormait-1’ material, as well as a combination of induction cladding and subsequent electrofriction treatment. The coatings were characterized and compared with the substrate in terms of the following parameters: microstructure, phase composition, hardness distribution, and friction-wear characteristics. After induction cladding of the Sormait-1 material, a dendritic structure was formed; however, subsequent electrofriction treatment resulted in a reduction of this dendritic structure, which contributed to an increase in the hardness of the material. The average hardness of the coatings after electrofriction treatment was 786 HV0.1, which is more than three times the hardness of the substrate. Furthermore, the influence of structural characteristics and hardness on abrasive wear resistance was examined in accordance with ASTM G65 international standards. Field tests were conducted on plough shares before and after electrofriction hardening to evaluate their performance. Each ploughshare was scanned with a structured 3D scanner before and after use in the field. From the scan data, the cutting-edge profile was calculated and three key parameters were determined: linear wear, volumetric wear, and mass reduction. According to the results of field tests, it was found that the service life of the blades hardened by electrofriction technology was 12%–14% higher compared to serial blades processed by induction cladding with the use of ‘Sormait-1’ material. Operational tests of hardened plough shares confirmed the results of laboratory tests and proved the advantages of electrofriction technology for increasing the wear resistance of soil tillage machine working bodies. Full article
(This article belongs to the Special Issue Advances in Wear-Resistant Coatings)
Show Figures

Figure 1

17 pages, 6043 KB  
Article
Experimental Study on Heat Recovery in a CaO/Ca(OH)2-Based Mechanical Fluidized Bed Thermochemical Energy Storage Reactor
by Viktor Kühl, Marc Linder and Matthias Schmidt
Energies 2024, 17(19), 4770; https://doi.org/10.3390/en17194770 - 24 Sep 2024
Viewed by 2115
Abstract
Long-term storage of seasonally available solar energy and its provision to balance heating energy demand can contribute significantly to the sustainable use of energy resources. Thermochemical energy storage is a suitable process for this purpose, offering the possibility of loss-free long-term energy storing [...] Read more.
Long-term storage of seasonally available solar energy and its provision to balance heating energy demand can contribute significantly to the sustainable use of energy resources. Thermochemical energy storage is a suitable process for this purpose, offering the possibility of loss-free long-term energy storing and heat supply. In order to develop suitable technical solutions for the use of this technology, novel reactor concepts and scientific questions regarding material and technology development are being investigated. In this publication, the energy storage process of a long-term energy storage system based on a ploughshare reactor is experimentally investigated under various technically relevant operating conditions. One specific aspect of this technology is related to the release of water vapour during the charging process. Therefore, this work focusses, in particular, on the possibility of technically utilizing the latent heat of the released water vapour in the range of 45 °C to 80 °C, which covers the operating requirements of common heating systems in households. The experiments have shown that the dehydration process enables the separation of two heat fluxes: the chemically bound energy for long-term storage and the physically (sensible and latent) stored energy for short-term applications. However, the limitation of gas transport was also identified as the most important influencing parameter for optimising the performance of the process. Full article
(This article belongs to the Special Issue Thermal Energy Storage Systems Modeling and Experimentation)
Show Figures

Figure 1

11 pages, 6666 KB  
Article
Application of Laser Remelting Technology in the Case of Cultivator Tines
by István Domokos and Sándor Pálinkás
Coatings 2024, 14(5), 637; https://doi.org/10.3390/coatings14050637 - 17 May 2024
Cited by 3 | Viewed by 1856
Abstract
The effectiveness of farming relies heavily on the condition of machinery and equipment, as well as maintaining the ideal soil conditions for the desired yields. Soil cultivation tools endure substantial stress and wear, emphasizing the need to study their durability surrounding soil contact. [...] Read more.
The effectiveness of farming relies heavily on the condition of machinery and equipment, as well as maintaining the ideal soil conditions for the desired yields. Soil cultivation tools endure substantial stress and wear, emphasizing the need to study their durability surrounding soil contact. Our research focuses on enhancing the lifespan of worn-out ploughshares through various heat treatment methods and hot metal spraying. By remelting the surface of ploughshares using a flame or laser, we aim to identify the most effective treatment for agricultural production. The improved surface treatment of the furrows in field tillers can significantly cut costs and enhance tillage efficiency. Our preliminary findings suggest that the metal spraying and remelting of nickel alloy hold promise for achieving these goals. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

14 pages, 6180 KB  
Article
Simulation of Soil Cutting and Power Consumption Optimization of a Typical Rotary Tillage Soil Blade
by Xiongye Zhang, Lixin Zhang, Xue Hu, Huan Wang, Xuebin Shi and Xiao Ma
Appl. Sci. 2022, 12(16), 8177; https://doi.org/10.3390/app12168177 - 16 Aug 2022
Cited by 25 | Viewed by 4252
Abstract
The rotary tillage knife roller, as one of the typical soil-touching parts of the tillage equipment cutting process, is in direct contact with the soil. During the cutting process, there are problems related to structural bending, deformation, and high power consumption, caused by [...] Read more.
The rotary tillage knife roller, as one of the typical soil-touching parts of the tillage equipment cutting process, is in direct contact with the soil. During the cutting process, there are problems related to structural bending, deformation, and high power consumption, caused by impact and load, and it is difficult to observe the micro-change law of the rotary tillage tool and soil. In view of the above problems, we took the soil of the cotton experimental field in Shihezi, Xinjiang, and the soil-contacting parts of the rotary tillage equipment, specifically the rotary tiller roller, as the research subject. Using the finite-element method (FEM) to simulate the structure of the rotary tiller with different bending angle parameters, we obtained its average stress and deformation position information, and obtained a range linear relationship between the bending angle and the structural performance of the rotary tiller tool. Using discrete element method (DEM)-based simulation to build the corresponding contact model, soil particle model, and soil–rotary tillage knife roll interaction model to simulate the dynamic process of a rotary tillage knife roll cutting soil, we obtained the change rules of the soil deformation area, cutting process energy, cutting resistance, and soil particle movement. By using the orthogonal simulation test and the response surface method, we optimized the kinematic parameters of the rotary tiller roller and the key design parameters of a single rotary tiller. Taking the reduction of cutting power consumption as the optimization goal and considering the influence of the bending angle on its structural performance, the optimal parameter combination was obtained as follows: the forward speed was 900 m/h, the rotation speed was 100 rad/min, the bending angle was 115°, and the minimum power consumption of the cutter roller was 0.181 kW. The corresponding average stress and deformation were 0.983 mm and 41.826 MPa, which were 15.8%, 13%, and 7.9% lower than the simulation results of power consumption, stress, and deformation under the initial parameter setting, respectively. Finally, the effectiveness of the simulation optimization model in reducing power consumption and the accuracy of the soil-cutting simulation were verified by a rotary tilling inter-field test, which provided theoretical reference and technical support for the design and optimization of other typical soil-touching parts of tillage and related equipment, such as disc harrow, ploughshare, and sub-soiling shovel. Full article
(This article belongs to the Special Issue Applications of Computer Science in Agricultural Engineering)
Show Figures

Figure 1

15 pages, 3483 KB  
Article
The Method of Calculating Ploughshares Durability in Agricultural Machines Verified on Plasma-Hardened Parts
by Alexandr Gulyarenko and Michał Bembenek
Agriculture 2022, 12(6), 841; https://doi.org/10.3390/agriculture12060841 - 10 Jun 2022
Cited by 15 | Viewed by 4260
Abstract
Reliability consists of four components: failure-less operation, maintainability, durability, and preservation ability. For different machines and different conditions of operation, different combinations of these properties, and differences in how they are balanced and proportioned are essential. For tractors, the most important aspect of [...] Read more.
Reliability consists of four components: failure-less operation, maintainability, durability, and preservation ability. For different machines and different conditions of operation, different combinations of these properties, and differences in how they are balanced and proportioned are essential. For tractors, the most important aspect of reliability is maintainability, while for agricultural machines, durability is most important. Using the example of a ploughshare, the issue of increasing the durability has been studied; a method for calculating the durability of a ploughshare for various types of soils has been described. The use of plasma hardening of the surface of a 65G-steel ploughshare has been proposed; the effectiveness of plasma hardening of soil-cutting parts and its economic feasibility have been proved. Due to hardening to a depth of 1–1.8 mm, the service life of parts increases by 2–3 times; moreover the downtime of expensive machine-tractor units for replacing worn-out parts is reduced. Full article
(This article belongs to the Special Issue Design and Application of Agricultural Equipment in Tillage System)
Show Figures

Figure 1

16 pages, 4532 KB  
Article
Research of Resistance of Selected Materials to Abrasive Wear to Increase the Ploughshare Lifetime
by Monika Vargova, Miroslava Tavodova, Katarina Monkova and Miroslav Dzupon
Metals 2022, 12(6), 940; https://doi.org/10.3390/met12060940 - 30 May 2022
Cited by 24 | Viewed by 4407
Abstract
Road maintenance and cleaning in winter are performed with ploughshares. Due to the fact that the layer of snow and ice that is removed from the road surface contains various hard impurities, ploughshares are exposed to high intensity abrasive wear. This article deals [...] Read more.
Road maintenance and cleaning in winter are performed with ploughshares. Due to the fact that the layer of snow and ice that is removed from the road surface contains various hard impurities, ploughshares are exposed to high intensity abrasive wear. This article deals with the resistance to abrasive wear of originally used ploughshare materials and the materials that were designed as a suitable modification of the ploughshare to increase its service life. The chemical composition of materials used to manufacture ploughshare components is unknown. For this reason, they were analyzed with an ARL 4460 spectrometer, which was used to analyze the element content. The main part of the research was focused on the abrasion resistance test, which was performed according to the GOST 23.208-79 standard. Based on the chemical analysis, it was found that the basic body of the ploughshare was made of S355J2G3 steel, and the raking blade material was made of 37MnSi5 steel. The original material (steel S355J2G3) of the ploughshare body as a reference standard was compared to steel HARDOX 450. Furthermore, a sample made of the original material of the raking blade (steel 37MnSi5) was used as a reference standard, the properties of which were compared to the newly designed OK 84.58 and UTP 690 hardfacing materials. The parametric test method of statistical hypotheses was also used to process and evaluate the weight losses of the selected materials. Full article
(This article belongs to the Special Issue Machinability and Tribological Performance of Advanced Alloys)
Show Figures

Figure 1

18 pages, 11815 KB  
Article
Roughness of Ploughshare Working Surface and Mechanisms of Wear during Operation in Various Soils
by Tomasz Stawicki, Piotr Kostencki and Beata Białobrzeska
Metals 2018, 8(12), 1042; https://doi.org/10.3390/met8121042 - 8 Dec 2018
Cited by 11 | Viewed by 3320
Abstract
The condition of working surfaces of ploughshares used in two soils with different granulometric condition (one containing large portion of coarse fractions and one containing increased portion of fine fractions) was evaluated. The soil cultivated for the research was characterised by high moisture [...] Read more.
The condition of working surfaces of ploughshares used in two soils with different granulometric condition (one containing large portion of coarse fractions and one containing increased portion of fine fractions) was evaluated. The soil cultivated for the research was characterised by high moisture content. In the tests, divided ploughshares were used, composed of separate parts: a share-points and a trapezoidal part. The aim of the research was to determine, on the grounds of scanning microscopy of working surfaces and their roughness measurements, wear processes occurring during operation of the ploughshare. It was found from the scanning photography that the main mechanism for material wear in soils containing an increased portion of coarse grains was microcutting and grooving, but in soils containing increased portion of fine fractions, microcutting dominated. Surface roughness of ploughshares used in soil with increased portion of coarse grains was higher than that of ploughshares working in soil with higher portion of fine fractions. It was found by statistical analysis that in soil with an increased portion of coarse grains, values of the parameters Ra (arithmetical mean deviation of the assessed profile), Rt (maximum height of the profile), Rv (maximum valley depth) and Rp (maximum peak height), most often occurring on ploughshare rake face, were 1.13, 10.50, 7.60, 2.74 µm respectively and, in soil with an increased portion of fine fractions, these values were 0.80, 6.86, 4.78 and 2.32 µm respectively. On working surfaces of ploughshares operating in both types of soil, higher values Rv in relation to Rp were found. In average, ratio of these parameters for ploughshares in both soils was ca. 2.7. This indicated that microcutting and scratching occurred in the process of material wear of a ploughshare. Full article
(This article belongs to the Special Issue Fatigue and Wear for Steels)
Show Figures

Figure 1

20 pages, 8086 KB  
Article
Tribological Properties of Plough Shares Made of Pearlitic and Martensitic Steels
by Tomasz Stawicki, Beata Białobrzeska and Piotr Kostencki
Metals 2017, 7(4), 139; https://doi.org/10.3390/met7040139 - 14 Apr 2017
Cited by 14 | Viewed by 6497
Abstract
Tribological properties of ploughshares made of pearlitic and martensitic steels were compared in field tests. Sectional ploughshares consisting of separate share-points and trapezoidal parts were subjected to examinations. Contours of the examined parts were similar, but the thickness of the parts made of [...] Read more.
Tribological properties of ploughshares made of pearlitic and martensitic steels were compared in field tests. Sectional ploughshares consisting of separate share-points and trapezoidal parts were subjected to examinations. Contours of the examined parts were similar, but the thickness of the parts made of pearlitic steel was 1 to 3 mm greater for the share-points and 0.5 to 2 mm greater for the trapezoidal parts. Within the tests, sandy loams, loams, and loamy sands with circa (ca.) 13% humidity were cultivated. A greater intensity of thickness reduction and mass wear of the parts made of pearlitic steel was found, which indicates a lower resistance of this steel to wear in soil. However, contour changes of the share-points and the trapezoidal parts made of pearlitic and martensitic steels were comparable, which was probably influenced by the greater thickness of the parts made of pearlitic steel. The roughness of the rake faces of the parts made of pearlitic steel was greater than that for the parts made of martensitic steel, which can be attributed to lower hardness of the former. The largest differences occurred between maximum peak heights of the roughness profile values (Rp), which indicates stronger ridging in the case of pearlitic steel. Scanning electron microscope (SEM) observations of the rake faces showed that martensitic steel was subjected to wear mostly by microcutting, but pearlitic steel was principally worn by microcutting and microploughing. During tillage, only one share-point made of pearlitic steel was broken. However, the main disadvantage of these parts was that their bending was related to the lower mechanical strength of pearlitic steel. Full article
(This article belongs to the Special Issue Alloy Steels)
Show Figures

Figure 1

Back to TopTop