Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = platelet destruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 23111 KiB  
Article
A Rare Yellow Diamond: Reconstruction of the Possible Geological History
by Isabella Pignatelli and Cristiano Ferraris
Crystals 2025, 15(5), 461; https://doi.org/10.3390/cryst15050461 - 14 May 2025
Viewed by 555
Abstract
In this study, a rare 3.49-carat yellow diamond was analyzed to reconstruct the geological processes that led to its distinctive form. The diamond exhibits growth and dissolution features, indicating a complex history. To preserve the sample’s integrity, non-destructive analytical techniques—including VIS, UV–Vis–NIR, and [...] Read more.
In this study, a rare 3.49-carat yellow diamond was analyzed to reconstruct the geological processes that led to its distinctive form. The diamond exhibits growth and dissolution features, indicating a complex history. To preserve the sample’s integrity, non-destructive analytical techniques—including VIS, UV–Vis–NIR, and IR spectroscopy—were employed. The yellow coloration of the diamond is attributed to the presence of N3 and N2 defects. Additionally, other defects such as N3VH0 centers and platelets were detected; however, the latter do not contribute to the coloration. The observations of the etch pits and surface microreliefs suggest that the diamond underwent size reduction due to dissolution events, which also altered its crystal habit over time. The diamond’s initial mixed-habit morphology evolved into a more complex one through a series of growth and dissolution processes that began during mantle storage. Furthermore, the presence of brown surface stains indicates radiation damage, likely acquired during its residence in alluvial deposits at the Earth’s surface. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

16 pages, 1044 KiB  
Article
Treatment of Medication-Related Osteonecrosis of the Jaw Without and With the Use of Advanced Platelet-Rich Fibrin: A Retrospective Clinical Study
by Paulina Adamska, Marcin Stasiak, Natalia Kobusińska, Michał Bartmański, Adam Zedler and Michał Studniarek
J. Funct. Biomater. 2025, 16(5), 180; https://doi.org/10.3390/jfb16050180 - 14 May 2025
Viewed by 671
Abstract
Background: Medication-related osteonecrosis of the jaw (MRONJ) is drug-induced bone destruction that is exposed for a minimum of 6 to 8 weeks in patients who have not received head and neck radiotherapy and who have not been diagnosed with facial bone metastases. MRONJ [...] Read more.
Background: Medication-related osteonecrosis of the jaw (MRONJ) is drug-induced bone destruction that is exposed for a minimum of 6 to 8 weeks in patients who have not received head and neck radiotherapy and who have not been diagnosed with facial bone metastases. MRONJ treatment outcomes are unpredictable. Therefore, alternative treatment methods are being explored, such as blood-derived platelet-rich preparations enriched with growth factors, including advanced platelet-rich fibrin (A-PRF). The presence of growth factors may enhance healing and reduce post-procedure complications. There are no studies examining the effect of A-PRF on the healing of patients with MRONJ. The aim of this study was to retrospectively evaluate treatment outcomes of patients with MRONJ surgically treated without and with the use of A-PRF. Materials and methods: This retrospective study included 28 patients who suffered from osteomyelitis due to MRONJ and underwent surgical treatment between 2019 and 2024. The patients were divided into two groups: the first group received surgical treatment without A-PRF, and the second group received surgical treatment with the application of A-PRF. This study analyzed demographic and clinical data, as well as treatment outcomes. Results: The patients were aged from 43 to 82 years. The most common cause of MRONJ was the administration of zoledronic acid for oncological reasons (22 patients, 78.6%), given intravenously. In 20 patients (71.4%), the antiresorptive treatment lasted longer than three years. The obtained healing distribution was binomial (presence or absence of healing). Estimation of the probability of healing using the maximum likelihood method provided a result of approximately 64%. The probability of ten or more healed patients in the A-PRF group was 41%. A-PRF helps with a probability of 59%, and without A-PRF, it was lower. Concomitantly, the differences between the group with A-PRF and without A-PRF were not statistically significant. Conclusions: The patients with MRONJ should have regular check-ups with radiological examinations at least every six months to detect possible recurrence. Treatment for MRONJ is long and difficult. Treatment of non-advanced lesions, without additional risk factors (such as treatment with zoledronate intravenously for oncological purposes for 3 years), showed a better prognosis. Sometimes, in addition to surgery, it is necessary to consider alternative methods. A-PRF may enhance MRONJ healing. However, there is no evidence of a significant effect of A-PRF on the healing of MRONJ. Full article
(This article belongs to the Special Issue Functional Biomaterials for Regenerative Dentistry)
Show Figures

Figure 1

17 pages, 4071 KiB  
Article
Examining the Effects of the RUNX1 p.Leu43Ser Variant on FPD/AML Phenotypes Using a CRISPR/Cas9-Generated Knock-In Murine Model
by Ana Marin-Quilez, Ignacio García-Tuñón, Rocío Benito, José Luis Ordoñez, Lorena Díaz-Ajenjo, Ana Lama-Villanueva, Carmen Guerrero, Jesús Pérez-Losada, José Ramón González-Porras, Jesús María Hernández-Rivas, Mónica del Rey and José María Bastida
Biomolecules 2025, 15(5), 708; https://doi.org/10.3390/biom15050708 - 12 May 2025
Viewed by 542
Abstract
Germline heterozygous variants in RUNX1 lead to Familial Platelet Disorder with Myeloid Leukemia Predisposition (FPD/AML). Cellular and/or animal models are helpful to uncovering the role of a variant in disease progression. Twenty-five mice per genotype (RUNX1WT/WT, RUNX1WT/L43S, RUNX1L43S/L43S [...] Read more.
Germline heterozygous variants in RUNX1 lead to Familial Platelet Disorder with Myeloid Leukemia Predisposition (FPD/AML). Cellular and/or animal models are helpful to uncovering the role of a variant in disease progression. Twenty-five mice per genotype (RUNX1WT/WT, RUNX1WT/L43S, RUNX1L43S/L43S), previously generated by CRISPR/Cas9, and nine sub-lethally irradiated mice per genotype were investigated. Peripheral blood (PB), bone marrow (BM), and spleen samples were analyzed by flow cytometry and histopathology. Deregulated genes were analyzed by RNA-seq in BM. An aberrant myeloid Mac1+Sca1+ckit population in the PB, BM, and spleen of two homozygous and one heterozygous mouse was observed, as well as BM hypercellularity. No Mac1+Sca1+ckit cells were detected in any RUNX1WT/WT mice. Moreover, the spleen of both homozygous mice showed destruction of the white/red pulp and the presence of apoptotic cells. The aberrant population was also detected in four irradiated mice, two heterozygous and two homozygous, in their PB, BM, and spleen. RNA-seq studies showed 698 genes significantly deregulated in the three non-irradiated Mac1+Sca1+ckit mice vs. six healthy mice, highlighting the alteration of genes involved in apoptosis and DNA repair. These results indicate that the homozygous form of the variant p.Leu43Ser may contribute to the pathogenesis of aberrant cells. Full article
(This article belongs to the Special Issue Molecular Advances in Platelet Disease, Thrombosis and Hemostasis)
Show Figures

Figure 1

25 pages, 7466 KiB  
Article
Analysis of the Expression and Activity of Cyclooxygenases COX-1 and COX-2 in THP-1 Monocytes and Macrophages Cultured with Xenogenic Collagen Matrices Biofunctionalized with the Injectable Platelet-Rich Fibrin
by Agnieszka Droździk, Katarzyna Barczak, Mateusz Bosiacki, Patrycja Kupnicka, Diana Cenariu, Willi Andrei Uriciuc, Dariusz Chlubek, Mariusz Lipski, Marek Droździk and Irena Baranowska-Bosiacka
Int. J. Mol. Sci. 2025, 26(9), 4386; https://doi.org/10.3390/ijms26094386 - 5 May 2025
Viewed by 1122
Abstract
Xenogenic collagen matrices are used in clinical practice for soft tissue augmentation around teeth and implants, either alone or biofunctionalized with injectable platelet-rich fibrin (iPRF). Their direct interaction with inflammatory cells may influence both healing and destructive inflammation processes. Therefore, expression of cyclooxygenases [...] Read more.
Xenogenic collagen matrices are used in clinical practice for soft tissue augmentation around teeth and implants, either alone or biofunctionalized with injectable platelet-rich fibrin (iPRF). Their direct interaction with inflammatory cells may influence both healing and destructive inflammation processes. Therefore, expression of cyclooxygenases (COX-1 and COX-2) and prostanoids (PGE2 and TXB2) was studied in THP-1 monocyte/macrophage cultures exposed to porcine collagen matrices (a non-cross-linked monolayer scaffold composed of collagen type I, collagen type III, and elastin (MLCM), a bilayer scaffold made of collagen types I and III (BLCM), and a volume-stable cross-linked monolayer scaffold (VSCM)). The study showed that VSCM and MLCM significantly reduced PGE2 concentrations in THP-1 monocyte cultures. iPRF further reduced PGE2 concentrations when exposed to MLCM. In contrast, incubation of THP-1 monocytes with VSCM and BLCM resulted in a significant increase in TXB2 concentrations compared with control conditions. Incubation of macrophages with MLCM, VSCM, and BLCM increased PGE2 concentrations, with VSCM and BLCM additionally increasing TXB2 concentrations. iPRF in macrophage cultures with VSCM and BLCM also resulted in increased PGE2 and TXB2 concentrations compared with control conditions. Confocal microscopy revealed no visible differences in COX-1 immunoexpression in monocytes and macrophages cultured with collagen matrices, either with or without iPFR. Weak positive COX-2 immunofluorescence was observed in monocytes, while moderate positive immunofluorescence was detected in macrophages. In conclusion, it can be suggested that the studied collagen matrices interact with monocytes/macrophages, with MLCM exhibiting the highest compatibility. Full article
(This article belongs to the Special Issue Targeting Collagen-Related Therapy)
Show Figures

Figure 1

21 pages, 23863 KiB  
Article
Application of AC-DC-AC Accelerated Aging to Assess the Galvanic Corrosion Risk of Mild Steel Coated with Graphene-Embedded Epoxy Coatings
by Kazem Sabet-Bokati and Kevin Paul Plucknett
Coatings 2025, 15(5), 501; https://doi.org/10.3390/coatings15050501 - 23 Apr 2025
Viewed by 696
Abstract
This study presents a novel approach to evaluate the galvanic corrosion risk of mild steel coated with graphene-embedded epoxy coatings. The potential for graphene platelets to promote anodic dissolution of the underlying steel substrate via galvanic corrosion mechanisms was systematically assessed through the [...] Read more.
This study presents a novel approach to evaluate the galvanic corrosion risk of mild steel coated with graphene-embedded epoxy coatings. The potential for graphene platelets to promote anodic dissolution of the underlying steel substrate via galvanic corrosion mechanisms was systematically assessed through the accelerated alternating current-direct current-alternating current (AC-DC-AC) technique and cathodic disbondment testing. The possible risk of displacing cathodic reactions from the coating–steel interface to the dispersed graphene platelets within the epoxy matrix was investigated by evaluating the degradation trend of the graphene-containing coating under the AC-DC-AC test. The degradation behaviour of both pure epoxy and graphene-embedded epoxy coatings during accelerated aging was characterized using electrochemical impedance spectroscopy (EIS) measurements. The finding highlighted the negligible catalytic effect of incorporated graphene platelets on the anodic dissolution of steel substrate. On the other hand, as an inert filler, graphene platelets contributed to the enhancement of the structural integrity of the epoxy matrix during the AC-DC-AC test and natural immersion in NaCl 3.5 wt % solution by enhancing the barrier performance of the coating. Despite their spectacular barrier performance, damaged graphene-containing coatings performed inferiorly against corrosion-induced delamination compared to pure epoxy. Samples underwent the cathodic disbondment test to eliminate the effect of substrate anodic dissolution from corrosion-induced delamination. The accelerated delamination of graphene-embedded epoxy coatings was attributed to the destructive impact of graphene platelets on the interfacial adhesion of the epoxy matrix to the steel substrate. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

22 pages, 1721 KiB  
Article
Insights on the Mechanisms of the Protective Action of Naringenin, Naringin and Naringin Dihydrochalcone on Blood Cells in Terms of Their Potential Anti-Atherosclerotic Activity
by Teresa Kaźmierczak, Sylwia Cyboran-Mikołajczyk, Natalia Trochanowska-Pauk, Tomasz Walski, Paulina Nowicka and Dorota Bonarska-Kujawa
Molecules 2025, 30(3), 547; https://doi.org/10.3390/molecules30030547 - 25 Jan 2025
Cited by 4 | Viewed by 1250
Abstract
Atherosclerosis is caused by injury to the blood arteries and progressive oxidative stress. Blood cells play an important role in its development; thus, their protection is important. Naringenin (N) is documented to possess a protective action against atherosclerosis, and we hypothesize that its [...] Read more.
Atherosclerosis is caused by injury to the blood arteries and progressive oxidative stress. Blood cells play an important role in its development; thus, their protection is important. Naringenin (N) is documented to possess a protective action against atherosclerosis, and we hypothesize that its derivatives, naringin (Nr) and naringin dihydrochalcone (Nd), with slightly different structures, possess similar or better activity. Therefore, this research aimed to find the mechanism of protective action of N, Nr and Nd in relation to erythrocytes, peripheral blood mononuclear cells (PBMCs) and platelets in terms of their potential anti-atherosclerotic effect. Moreover, their physicochemical properties and the interaction of flavonoids with liposomes were studied. All flavonoids protected erythrocytes from AAPH- and H2O2-induced oxidation to varying degrees. None of them had a destructive effect on erythrocyte membrane, and they did not impact the metabolic activity of PBMC and platelets. Nr and Nd inhibited collagen-induced platelet aggregation better in tested concentrations than N. Studied compounds did not induce liposome aggregation, but N and Nd changed their dipole potential. Obtained results show that Nd possesses slightly better activity than N and may have a better potential health effect on blood cells, which is very important in the design of anti-atherosclerotic therapeutics. Full article
Show Figures

Figure 1

27 pages, 1886 KiB  
Review
Thrombocytopenia in Critically Ill Children: A Review for Practicing Clinicians
by Balagangadhar R. Totapally, Abhinav Totapally and Paul A. Martinez
Children 2025, 12(1), 83; https://doi.org/10.3390/children12010083 - 12 Jan 2025
Viewed by 2320
Abstract
Thrombocytopenia frequently occurs in patients before, during, and after admission to Pediatric Intensive Care Units (PICUs). In critically ill children, it is often due to multifactorial causes and can be a sign of significant organ dysfunction. This review summarizes the potential causes/mechanisms of [...] Read more.
Thrombocytopenia frequently occurs in patients before, during, and after admission to Pediatric Intensive Care Units (PICUs). In critically ill children, it is often due to multifactorial causes and can be a sign of significant organ dysfunction. This review summarizes the potential causes/mechanisms of thrombocytopenia in acutely ill children, their identification, and treatments, with special attention paid to septic patients. The mechanisms of thrombocytopenia include decreased production and sequestration, but the most common reason is increased destruction or consumption. This review specifically reviews and compares the presentation, pathogenesis, and treatment of disseminated intravascular coagulation (DIC) and the thrombotic microangiopathic spectrum (TMA), including thrombocytopenia-associated multiorgan failure (TAMOF), hemolytic uremic syndrome, and other diagnoses. The other etiologies discussed include HLH/MAS, immune thrombocytopenia, and dilutional thrombocytopenia. Finally, this review analyzes platelet transfusions, the various thresholds, and complications. Full article
(This article belongs to the Special Issue Addressing Challenges in Pediatric Critical Care Medicine)
Show Figures

Figure 1

11 pages, 318 KiB  
Article
Retrospective Evaluation of Survival and Prognostic Factors in Immune Thrombocytopenia: A Single-Center and Cross-Sectional Study
by Gökhan Pektaş, İbrahim Asaf Uncu, Yelda Dere, Şeyma Öncü, Merve Becit Kızılkaya, Gökhan Sadi and Mehmet Bilgehan Pektaş
Medicina 2024, 60(7), 1153; https://doi.org/10.3390/medicina60071153 - 17 Jul 2024
Cited by 1 | Viewed by 2251
Abstract
Background and Objectives: Immune thrombocytopenia (ITP) is an autoimmune disease characterized by the autoantibody-mediated destruction of platelets. The treatment of ITP aims to maintain a sufficient platelet count to prevent bleeding. First-line treatment options include corticosteroids and intravenous immunoglobulin (IVIg), while second-line treatments [...] Read more.
Background and Objectives: Immune thrombocytopenia (ITP) is an autoimmune disease characterized by the autoantibody-mediated destruction of platelets. The treatment of ITP aims to maintain a sufficient platelet count to prevent bleeding. First-line treatment options include corticosteroids and intravenous immunoglobulin (IVIg), while second-line treatments include splenectomy, rituximab and other immunosuppressive agents, and thrombopoietin (TPO) receptor agonists. This study aims to discuss the treatment methods and results from 100 patients with ITP at the Muğla Training and Research Hospital through a pharmacological approach. Materials and Methods: Demographic characteristics, clinical findings, bone marrow aspiration and biopsy results, and treatments and treatment responses at the time of diagnosis of the 100 patients with ITP who were treated and followed up in the period 2015–2023 were evaluated retrospectively. Results: In the third month after treatment, the overall response percentage was 100% in patients who received steroids only and 88% in patients who received IVIg treatment alone or in combination with steroids (p > 0.05). The most preferred second-line treatments were splenectomy (41%), eltrombopag (26%), and rituximab (10%). Bone marrow biopsy was performed in 54% of patients, where 35.1% showed increased megakaryocytes, 44.4% adequate megakaryocytes, and 14.8% decreased megakaryocytes. It is noted that eltrombopag and rituximab, in particular, yield higher complete remission rates than immunosuppressive drugs. Conclusions: Considering the side effects of immunosuppressive medications, IVIg, splenectomy, and steroid therapy, the use of new agents such as eltrombopag, which are easily tolerated and have a lower risk of side effects, is expected to increase. Full article
(This article belongs to the Section Hematology and Immunology)
Show Figures

Graphical abstract

14 pages, 444 KiB  
Article
Hemostatic Status of Neonates with Perinatal Hypoxia, Studied via NATEM in Cord Blood Samples
by Marina Tsaousi, Rozeta Sokou, Abraham Pouliakis, Marianna Politou, Nicoletta Iacovidou, Theodora Boutsikou, Alma Sulaj, Eleni Karapati, Andreas G. Tsantes, Argirios E. Tsantes, Serena Valsami and Zoi Iliodromiti
Children 2024, 11(7), 799; https://doi.org/10.3390/children11070799 - 29 Jun 2024
Cited by 2 | Viewed by 1317
Abstract
Background: Perinatal hypoxia may result in coagulation dysfunction. Diminished blood flow or oxygen to the fetus/neonate during the perinatal period can cause bone marrow and liver function impairment, leading to thrombocytopenia, impaired synthesis of clotting and fibrinolytic factors, and increased destruction of platelets [...] Read more.
Background: Perinatal hypoxia may result in coagulation dysfunction. Diminished blood flow or oxygen to the fetus/neonate during the perinatal period can cause bone marrow and liver function impairment, leading to thrombocytopenia, impaired synthesis of clotting and fibrinolytic factors, and increased destruction of platelets in the small blood vessels. The goal of the present study was to evaluate the hemostatic status of newborns with perinatal hypoxia via the non-activated thromboelastometry (NATEM) assay in cord blood samples. Methods: 134 hypoxic neonates born in our maternity unit over a 1.5-year period were enrolled in this observational cohort study, and 189 healthy neonates served as the control group. Participation in the study was voluntary and parents signed informed consent prior to recruitment. Demographic and clinical data were recorded on admission, and the NATEM method was performed on cord blood samples. The following NATEM values were evaluated: clotting time (CT), alpha angle (α-angle), clot formation time (CFT), clot amplitude at 5 and 10 min. (A5, A10), maximum clot firmness (MCF), clot lysis index at 60 min. after CT (LI60), and maximum clot elasticity (MCE). Statistical analysis was conducted utilizing the SAS for Windows 9.4 software platform. Results: Neonates with perinatal hypoxia exhibited decreased fibrinolytic potential in comparison to healthy neonates, as indicated by increased LI60, and this difference was statistically significant (LΙ60: 94 (92–96) Vs 93 (91–95), p value = 0.0001). There were no statistically significant differences noted among the remaining NATEM variables. Conclusion: Our findings indicate decreased fibrinolytic potential in hypoxic neonates in comparison to healthy neonates, suggesting that NATEM could serve as an effective tool for promptly identifying hemostasis dysfunction in this group of neonates. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Figure 1

23 pages, 707 KiB  
Review
Treatment of Immune Thrombocytopenia: Contextualization from a Historical Perspective
by Daniel Martínez-Carballeira, Ángel Bernardo, Alberto Caro, Inmaculada Soto and Laura Gutiérrez
Hematol. Rep. 2024, 16(3), 390-412; https://doi.org/10.3390/hematolrep16030039 - 26 Jun 2024
Cited by 3 | Viewed by 4020
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by an isolated decrease in platelet count and an increased risk of bleeding. The pathogenesis is complex, affecting multiple components of the immune system and causing both peripheral destruction of platelets and inadequate production in [...] Read more.
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by an isolated decrease in platelet count and an increased risk of bleeding. The pathogenesis is complex, affecting multiple components of the immune system and causing both peripheral destruction of platelets and inadequate production in the bone marrow. In this article, we review the treatment of ITP from a historical perspective, discussing first line and second line treatments, and management of refractory disease. Full article
Show Figures

Figure 1

20 pages, 1275 KiB  
Article
Can Machine Learning Assist in Diagnosis of Primary Immune Thrombocytopenia? A Feasibility Study
by Haroon Miah, Dimitrios Kollias, Giacinto Luca Pedone, Drew Provan and Frederick Chen
Diagnostics 2024, 14(13), 1352; https://doi.org/10.3390/diagnostics14131352 - 26 Jun 2024
Cited by 4 | Viewed by 2607
Abstract
Primary Immune Thrombocytopenia (ITP) is a rare autoimmune disease characterised by the immune-mediated destruction of peripheral blood platelets in patients leading to low platelet counts and bleeding. The diagnosis and effective management of ITP are challenging because there is no established test to [...] Read more.
Primary Immune Thrombocytopenia (ITP) is a rare autoimmune disease characterised by the immune-mediated destruction of peripheral blood platelets in patients leading to low platelet counts and bleeding. The diagnosis and effective management of ITP are challenging because there is no established test to confirm the disease and no biomarker with which one can predict the response to treatment and outcome. In this work, we conduct a feasibility study to check if machine learning can be applied effectively for the diagnosis of ITP using routine blood tests and demographic data in a non-acute outpatient setting. Various ML models, including Logistic Regression, Support Vector Machine, k-Nearest Neighbor, Decision Tree and Random Forest, were applied to data from the UK Adult ITP Registry and a general haematology clinic. Two different approaches were investigated: a demographic-unaware and a demographic-aware one. We conduct extensive experiments to evaluate the predictive performance of these models and approaches, as well as their bias. The results revealed that Decision Tree and Random Forest models were both superior and fair, achieving nearly perfect predictive and fairness scores, with platelet count identified as the most significant variable. Models not provided with demographic information performed better in terms of predictive accuracy but showed lower fairness scores, illustrating a trade-off between predictive performance and fairness. Full article
Show Figures

Figure 1

16 pages, 604 KiB  
Review
Pathophysiology, Clinical Manifestations and Diagnosis of Immune Thrombocytopenia: Contextualization from a Historical Perspective
by Daniel Martínez-Carballeira, Ángel Bernardo, Alberto Caro, Inmaculada Soto and Laura Gutiérrez
Hematol. Rep. 2024, 16(2), 204-219; https://doi.org/10.3390/hematolrep16020021 - 3 Apr 2024
Cited by 9 | Viewed by 11405
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by an isolated decrease in the platelet count and an increased risk of bleeding. The pathogenesis is complex, affecting multiple components of the immune system and causing both peripheral destruction of platelets and impaired central [...] Read more.
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by an isolated decrease in the platelet count and an increased risk of bleeding. The pathogenesis is complex, affecting multiple components of the immune system and causing both peripheral destruction of platelets and impaired central megakaryopoiesis and platelet production in the bone marrow. Here, we intend to contextualize the current knowledge on the pathophysiology, terminology, epidemiology, clinical manifestations, diagnosis, and prognosis of ITP from a historical perspective and the first references to the never-stopping garnering of knowledge about this entity. We highlight the necessity to better understand ITP in order to be able to provide ITP patients with personalized treatment options, improving disease prognosis and reducing the incidence or frequency of refractoriness. Full article
Show Figures

Figure 1

29 pages, 445 KiB  
Review
Recommendations for the Clinical Approach to Immune Thrombocytopenia: Spanish ITP Working Group (GEPTI)
by María Eva Mingot-Castellano, Mariana Canaro Hirnyk, Blanca Sánchez-González, María Teresa Álvarez-Román, Abelardo Bárez-García, Ángel Bernardo-Gutiérrez, Silvia Bernat-Pablo, Estefanía Bolaños-Calderón, Nora Butta-Coll, Gonzalo Caballero-Navarro, Isabel Socorro Caparrós-Miranda, Laura Entrena-Ureña, Luis Fernando Fernández-Fuertes, Luis Javier García-Frade, María del Carmen Gómez del Castillo, Tomás José González-López, Carlos Grande-García, José María Guinea de Castro, Isidro Jarque-Ramos, Reyes Jiménez-Bárcenas, Elsa López-Ansoar, Daniel Martínez-Carballeira, Violeta Martínez-Robles, Emilio Monteagudo-Montesinos, José Antonio Páramo-Fernández, María del Mar Perera-Álvarez, Inmaculada Soto-Ortega, David Valcárcel-Ferreiras and Cristina Pascual-Izquierdoadd Show full author list remove Hide full author list
J. Clin. Med. 2023, 12(20), 6422; https://doi.org/10.3390/jcm12206422 - 10 Oct 2023
Cited by 19 | Viewed by 7131
Abstract
Primary immune thrombocytopenia (ITP) is a complex autoimmune disease whose hallmark is a deregulation of cellular and humoral immunity leading to increased destruction and reduced production of platelets. The heterogeneity of presentation and clinical course hampers personalized approaches for diagnosis and management. In [...] Read more.
Primary immune thrombocytopenia (ITP) is a complex autoimmune disease whose hallmark is a deregulation of cellular and humoral immunity leading to increased destruction and reduced production of platelets. The heterogeneity of presentation and clinical course hampers personalized approaches for diagnosis and management. In 2021, the Spanish ITP Group (GEPTI) of the Spanish Society of Hematology and Hemotherapy (SEHH) updated a consensus document that had been launched in 2011. The updated guidelines have been the reference for the diagnosis and management of primary ITP in Spain ever since. Nevertheless, the emergence of new tools and strategies makes it advisable to review them again. For this reason, we have updated the main recommendations appropriately. Our aim is to provide a practical tool to facilitate the integral management of all aspects of primary ITP management. Full article
(This article belongs to the Section Hematology)
16 pages, 14537 KiB  
Article
Intramuscular Bleeding and Formation of Microthrombi during Skeletal Muscle Damage Caused by a Snake Venom Metalloprotease and a Cardiotoxin
by Medha Sonavane, José R. Almeida, Elanchezhian Rajan, Harry F. Williams, Felix Townsend, Elizabeth Cornish, Robert D. Mitchell, Ketan Patel and Sakthivel Vaiyapuri
Toxins 2023, 15(9), 530; https://doi.org/10.3390/toxins15090530 - 28 Aug 2023
Cited by 5 | Viewed by 3792
Abstract
The interactions between specific snake venom toxins and muscle constituents are the major cause of severe muscle damage that often result in amputations and subsequent socioeconomic ramifications for snakebite victims and/or their families. Therefore, improving our understanding of venom-induced muscle damage and determining [...] Read more.
The interactions between specific snake venom toxins and muscle constituents are the major cause of severe muscle damage that often result in amputations and subsequent socioeconomic ramifications for snakebite victims and/or their families. Therefore, improving our understanding of venom-induced muscle damage and determining the underlying mechanisms of muscle degeneration/regeneration following snakebites is critical to developing better strategies to tackle this issue. Here, we analysed intramuscular bleeding and thrombosis in muscle injuries induced by two different snake venom toxins (CAMP—Crotalus atrox metalloprotease (a PIII metalloprotease from the venom of this snake) and a three-finger toxin (CTX, a cardiotoxin from the venom of Naja pallida)). Classically, these toxins represent diverse scenarios characterised by persistent muscle damage (CAMP) and successful regeneration (CTX) following acute damage, as normally observed in envenomation by most vipers and some elapid snakes of Asian, Australasian, and African origin, respectively. Our immunohistochemical analysis confirmed that both CAMP and CTX induced extensive muscle destruction on day 5, although the effects of CTX were reversed over time. We identified the presence of fibrinogen and P-selectin exposure inside the damaged muscle sections, suggesting signs of bleeding and the formation of platelet aggregates/microthrombi in tissues, respectively. Intriguingly, CAMP causes integrin shedding but does not affect any blood clotting parameters, whereas CTX significantly extends the clotting time and has no impact on integrin shedding. The rates of fibrinogen clearance and reduction in microthrombi were greater in CTX-treated muscle compared to CAMP-treated muscle. Together, these findings reveal novel aspects of venom-induced muscle damage and highlight the relevance of haemostatic events such as bleeding and thrombosis for muscle regeneration and provide useful mechanistic insights for developing better therapeutic interventions. Full article
(This article belongs to the Special Issue Pre-clinical and Clinical Management of Snakebite Envenomation)
Show Figures

Figure 1

10 pages, 365 KiB  
Viewpoint
Current Concepts in the Diagnosis and Management of Adult Primary Immune Thrombocytopenia: Our Personal View
by Tomás José González-López, Adrian Newland and Drew Provan
Medicina 2023, 59(4), 815; https://doi.org/10.3390/medicina59040815 - 21 Apr 2023
Cited by 5 | Viewed by 3980
Abstract
Primary immune thrombocytopenia (ITP) is an acquired blood disorder that causes a reduction in circulating platelets with the potential for bleeding. The incidence of ITP is slightly higher in adults and affects more women than men until 60 years, when males are more [...] Read more.
Primary immune thrombocytopenia (ITP) is an acquired blood disorder that causes a reduction in circulating platelets with the potential for bleeding. The incidence of ITP is slightly higher in adults and affects more women than men until 60 years, when males are more affected. Despite advances in basic science, primary ITP remains a diagnosis of exclusion. The disease is heterogeneous in its clinical behavior and response to treatment. This reflects the complex underlying pathophysiology, which remains ill-understood. Platelet destruction plays a role in thrombocytopenia, but underproduction is also a major contributing factor. Active ITP is a proinflammatory autoimmune disease involving abnormalities within the T and B regulatory cell compartments, along with several other immunological abnormalities. Over the last several years, there has been a shift from using immunosuppressive therapies for ITP towards approved treatments, such as thrombopoietin receptor agonists. The recent COVID-19 pandemic has hastened this management shift, with thrombopoietin receptor agonists becoming the predominant second-line treatment. A greater understanding of the underlying mechanisms has led to the development of several targeted therapies, some of which have been approved, with others still undergoing clinical development. Here we outline our view of the disease, including our opinion about the major diagnostic and therapeutic challenges. We also discuss our management of adult ITP and our placement of the various available therapies. Full article
(This article belongs to the Section Hematology and Immunology)
Back to TopTop