Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = plasma treatment of PFAS-contaminated water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2360 KB  
Communication
Assessment of Cytotoxicity and Genotoxicity of Plasma-Treated Perfluorooctanesulfonate Containing Water Using In Vitro Bioassays
by Markus Windisch, Roman Klymenko, Hannah Grießler and Clemens Kittinger
Toxics 2024, 12(12), 889; https://doi.org/10.3390/toxics12120889 - 6 Dec 2024
Viewed by 1167
Abstract
The contamination of ground and surface waters with per- and polyfluoroalkyl substances (PFASs) is of major concern due to their potential adverse effects on human health. The carbon–fluorine bond makes these compounds extremely stable and hardly degradable by natural processes. Therefore, methods for [...] Read more.
The contamination of ground and surface waters with per- and polyfluoroalkyl substances (PFASs) is of major concern due to their potential adverse effects on human health. The carbon–fluorine bond makes these compounds extremely stable and hardly degradable by natural processes. Therefore, methods for PFAS removal from water are desperately needed. In this context, plasma treatment of water has been proposed as an effective method with reported removal rates exceeding 90%. However, the high reactivity of plasma discharge results in the formation of many reactive species, like radicals, ozone, or even solvated electrons, which lead to a complex reaction cascade and, consequently, to the generation of a wide variety of different chemical products. The toxicological properties of these PFAS breakdown products are largely unknown. The present study focuses on a toxicological assessment of PFAS-containing plasma-treated water samples. Aqueous solutions of long-chain perfluorooctanesulfonate (PFOS) were treated with various plasma-atmospheric regimes. Subsequently, plasma-treated water samples were subjected to in vitro bioassays. Cytotoxicity and genotoxicity were assessed with the MTS assay using human liver cells (HepG2) and the Ames MPFTM assay using Salmonella Typhimurium strains. Our results demonstrate varying cyto- and genotoxic properties of water containing PFAS breakdown products depending on the atmosphere present during plasma treatment. Based on the results of this study, the atmosphere used during plasma treatment affects the toxicological properties of the treated sample. Further studies are therefore needed to uncover the toxicological implications of the different treatment parameters, including the PFAS starting compound, the atmosphere during treatment, as well as the quantity of plasma energy applied. Full article
Show Figures

Figure 1

16 pages, 1222 KB  
Article
Plasma-Assisted Abatement of Per- and Polyfluoroalkyl Substances (PFAS): Thermodynamic Analysis and Validation in Gliding Arc Discharge
by Mikaela J. Surace, Jimmy Murillo-Gelvez, Mobish A. Shaji, Alexander A. Fridman, Alexander Rabinovich, Erica R. McKenzie, Gregory Fridman and Christopher M. Sales
Plasma 2023, 6(3), 419-434; https://doi.org/10.3390/plasma6030029 - 17 Jul 2023
Cited by 13 | Viewed by 4294
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic organofluorine surfactants that are resistant to typical methods of degradation. Thermal techniques along with other novel, less energy-intensive techniques are currently being investigated for the treatment of PFAS-contaminated matrices. Non-equilibrium plasma is one [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic organofluorine surfactants that are resistant to typical methods of degradation. Thermal techniques along with other novel, less energy-intensive techniques are currently being investigated for the treatment of PFAS-contaminated matrices. Non-equilibrium plasma is one technique that has shown promise for the treatment of PFAS-contaminated water. To better tailor non-equilibrium plasma systems for this application, knowledge of the energy required for mineralization, and in turn the roles that plasma reactive species and heat can play in this process, would be useful. In this study, fundamental thermodynamic equations were used to estimate the enthalpies of reaction (480 kJ/mol) and formation (−4640 kJ/mol) of perfluorooctanoic acid (PFOA, a long-chain legacy PFAS) in water. This enthalpy of reaction estimate indicates that plasma reactive species alone cannot catalyze the reaction; because the reaction is endothermic, energy input (e.g., heat) is required. The estimated enthalpies were used with HSC Chemistry software to produce a model of PFOA defluorination in a 100 mg/L aqueous solution as a function of enthalpy. The model indicated that as enthalpy of the reaction system increased, higher PFOA defluorination, and thus a higher extent of mineralization, was achieved. The model results were validated using experimental results from the gliding arc plasmatron (GAP) treatment of PFOA or PFOS-contaminated water using argon and air, separately, as the plasma gas. It was demonstrated that PFOA and PFOS mineralization in both types of plasma required more energy than predicted by thermodynamics, which was anticipated as the model did not take kinetics into account. However, the observed trends were similar to that of the model, especially when argon was used as the plasma gas. Overall, it was demonstrated that while energy input (e.g., heat) was required for the non-equilibrium plasma degradation of PFOA in water, a lower energy barrier was present with plasma treatment compared to conventional thermal treatments, and therefore mineralization was improved. Plasma reactive species, such as hydroxyl radicals (OH) and/or hydrated electrons (e(aq)), though unable to accelerate an endothermic reaction alone, likely served as catalysts for PFOA mineralization, helping to lower the energy barrier. In this study, the activation energies (Ea) for these species to react with the alpha C–F bond in PFOA were estimated to be roughly 1 eV for hydroxyl radicals and 2 eV for hydrated electrons. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

14 pages, 2767 KB  
Review
Removal of Per- and Polyfluoroalkyl Substances by Electron Beam and Plasma Irradiation: A Mini-Review
by Linke Jiang, Siqin Wang, Wenzheng Chen, Jiang Lin, Xin Yu, Mingbao Feng and Kun Wan
Water 2022, 14(11), 1684; https://doi.org/10.3390/w14111684 - 25 May 2022
Cited by 17 | Viewed by 4506
Abstract
The global prevalence and environmental risks of per- and polyfluoroalkyl substances (PFASs) have caused increasing concern regarding their strategic elimination from aqueous environments. It has recently been recognized that advanced oxidation–reduction technologies (AO/RTs) exhibit superior removal performance for these ubiquitous pollutants. However, the [...] Read more.
The global prevalence and environmental risks of per- and polyfluoroalkyl substances (PFASs) have caused increasing concern regarding their strategic elimination from aqueous environments. It has recently been recognized that advanced oxidation–reduction technologies (AO/RTs) exhibit superior removal performance for these ubiquitous pollutants. However, the detailed mechanisms and product risks have not been well summarized and systematically deciphered. In this mini-review article, the basic operating principles of two typical AO/RTs (electron beam and plasma irradiation) and their reported applications in the abatement of PFASs are described in detail. It is noteworthy that these reductive treatments induced remarkable defluorination efficiency of PFOA and PFOS with the generation of short-chain congeners in water. The reaction mechanisms mainly included desulfonization, decarboxylation, H/F exchange, radical cyclization, and stepwise losses of CF2 groups. Unexpectedly, partial degradation products manifested high potential in triggering acute and chronic aquatic toxicity, genotoxicity, and developmental toxicity. Additionally, high or even increased resistance to biodegradability was observed for multiple products relative to the parent chemicals. Taken together, both electron beam and plasma irradiation hold great promise in remediating PFAS-contaminated water and wastewater, while the secondary ecological risks should be taken into account during practical applications. Full article
(This article belongs to the Special Issue Removal of PFAS from Water)
Show Figures

Figure 1

19 pages, 4522 KB  
Article
Effectiveness of Non-Thermal Plasma Induced Degradation of Per- and Polyfluoroalkyl Substances from Water
by Muhammad Jehanzaib Khan, Vojislav Jovicic, Ana Zbogar-Rasic, Alexander Poser, Katharina Freichels and Antonio Delgado
Water 2022, 14(9), 1408; https://doi.org/10.3390/w14091408 - 28 Apr 2022
Cited by 15 | Viewed by 4363
Abstract
Per- and polyfluoroalkyl substances (PFAS) are omnipresent synthetic chemicals. Due to their industrial importance and widespread use as a key component in various applications and a variety of products, these compounds can be found today in high concentrations (>1 μg/L) in surface and [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are omnipresent synthetic chemicals. Due to their industrial importance and widespread use as a key component in various applications and a variety of products, these compounds can be found today in high concentrations (>1 μg/L) in surface and groundwater but also spread throughout the ecosystem, where they represent a serious threat to most living organisms. The removal or degradation of PFAS contaminants from water and soil is becoming a legal obligation in a growing number of countries around the globe. This, however, demands novel techniques for the degradation of PFAS since conventional water treatment techniques are either insufficient or extremely expensive due to the persistent nature of these compounds caused by their extraordinary chemical stability. The goal of this work was therefore to investigate the practical potential of the application-oriented use of atmospheric non-thermal plasma as a powerful advanced oxidation method for the purification of water contaminated with PFAS compounds. Special attention was devoted to the development of the concept that can be scaled up to the capacity level of approximately 100–200 m3 of water per hour, contaminated with PFAS and other contaminants including organic and inorganic material generally present in soil, and surface or groundwater. Our major research interest was to define the minimum required treatment time for optimal purification results, as well as to understand the influence of the initial concentration of PFAS in water and the potential presence of co-contaminants often present in situ on the efficiency of the degradation process. A chemical analysis of the treated samples demonstrated the ability of the atmospheric plasma to reduce more than 50% of the initial PFAS amount in the water samples in less than 300 s of treatment time. PFOA, however, showed more rigidity towards degradation, where a double treatment time was needed to reach similar degradation levels. The obtained results showed that the initial concentration level does not play a major role in the process. However, the PFAS degradation profiles for all tested concentrations show a strongly nonlinear behavior with time, characterized by the fast decrease of the process efficiency in the case of longer treatment times. For prolonged treatment times, a constant increase in the samples’ conductivity was measured, which might be the limiting factor for the degradation rate in the case of prolonged treatment times. Full article
(This article belongs to the Special Issue Removal of PFAS from Water)
Show Figures

Figure 1

Back to TopTop