Assessment of Cytotoxicity and Genotoxicity of Plasma-Treated Perfluorooctanesulfonate Containing Water Using In Vitro Bioassays
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation, Treatment, and Analyses of the PFOS Sample
2.2. Cell Culture
2.3. MTS Cell Viability Assay
2.4. Ames MPF Assay
Data Evaluation and Statistical Analysis
3. Results
3.1. PFAS Concentrations
3.2. MTS Results
3.3. Ames MPFTM Results
3.4. Dose-Dependent Genotoxicity of Plasma Treated, PFOS Containing Water Under Argon Atmosphere
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müller, V.; Kindness, A.; Feldmann, J. Fluorine Mass Balance Analysis of PFAS in Communal Waters at a Wastewater Plant from Austria. Water Res. 2023, 244, 120501. [Google Scholar] [CrossRef] [PubMed]
- Moody, C.A.; Field, J.A. Determination of Perfluorocarboxylates in Groundwater Impacted by Fire-Fighting Activity. Environ. Sci. Technol. 1999, 33, 2800–2806. [Google Scholar] [CrossRef]
- Kwok, K.Y.; Yamazaki, E.; Yamashita, N.; Taniyasu, S.; Murphy, M.B.; Horii, Y.; Petrick, G.; Kallerborn, R.; Kannan, K.; Murano, K.; et al. Transport of Perfluoroalkyl Substances (PFAS) from an Arctic Glacier to Downstream Locations: Implications for Sources. Sci. Total Environ. 2013, 447, 46–55. [Google Scholar] [CrossRef]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A Review of the Pathways of Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs) and Present Understanding of Health Effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.M.; Zhang, S.; Hoffman, K.; Miranda, M.L.; Stapleton, H.M. Concentrations of Per- and Polyfluoroalkyl Substances (PFAS) in Human Placental Tissues and Associations with Birth Outcomes. Chemosphere 2022, 295, 133873. [Google Scholar] [CrossRef]
- Worley, R.R.; Moore, S.M.A.; Tierney, B.C.; Ye, X.; Calafat, A.M.; Campbell, S.; Woudneh, M.B.; Fisher, J. Per- and Polyfluoroalkyl Substances in Human Serum and Urine Samples from a Residentially Exposed Community. Environ. Int. 2017, 106, 135–143. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.; Ducatman, A.; Deng, C.; von Stackelberg, K.E.; Danford, C.J.; Zhang, X. Association of Per- and Polyfluoroalkyl Substance Exposure with Fatty Liver Disease Risk in US Adults. JHEP Rep. 2023, 5, 100694. [Google Scholar] [CrossRef]
- Nian, M.; Li, Q.Q.; Bloom, M.; Qian, Z.; Syberg, K.M.; Vaughn, M.G.; Wang, S.Q.; Wei, Q.; Zeeshan, M.; Gurram, N.; et al. Liver Function Biomarkers Disorder Is Associated with Exposure to Perfluoroalkyl Acids in Adults: Isomers of C8 Health Project in China. Environ. Res. 2019, 172, 81–88. [Google Scholar] [CrossRef]
- Mastrantonio, M.; Bai, E.; Uccelli, R.; Cordiano, V.; Screpanti, A.; Crosignani, P. Drinking Water Contamination from Perfluoroalkyl Substances (PFAS): An Ecological Mortality Study in the Veneto Region, Italy. Eur. J. Public Health 2018, 28, 180–185. [Google Scholar] [CrossRef]
- Messmer, M.F.; Salloway, J.; Shara, N.; Locwin, B.; Harvey, M.W.; Traviss, N. Risk of Cancer in a Community Exposed to Per- and Poly-Fluoroalkyl Substances. Environ. Health Insights 2022, 16, 1–16. [Google Scholar] [CrossRef]
- Goudarzi, H.; Miyashita, C.; Okada, E.; Kashino, I.; Chen, C.J.; Ito, S.; Araki, A.; Kobayashi, S.; Matsuura, H.; Kishi, R. Prenatal Exposure to Perfluoroalkyl Acids and Prevalence of Infectious Diseases up to 4 Years of Age. Environ. Int. 2017, 104, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Dixit, F.; Barbeau, B.; Mostafavi, S.G.; Mohseni, M. PFOA and PFOS Removal by Ion Exchange for Water Reuse and Drinking Applications: Role of Organic Matter Characteristics. Environ. Sci. 2019, 5, 1782–1795. [Google Scholar] [CrossRef]
- Appleman, T.D.; Higgins, C.P.; Quiñones, O.; Vanderford, B.J.; Kolstad, C.; Zeigler-Holady, J.C.; Dickenson, E.R.V. Treatment of Poly- and Perfluoroalkyl Substances in U.S. Full-Scale Water Treatment Systems. Water Res. 2014, 51, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Steinle-Darling, E.; Reinhard, M. Nanofiltration for Trace Organic Contaminant Removal: Structure, Solution, and Membrane Fouling Effects on the Rejection of Perfluorochemicals. Environ. Sci. Technol. 2008, 42, 5292–5297. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Fernando, S.; Baygi, S.F.; Multari, N.; Thagard, S.M.; Holsen, T.M. Breakdown Products from Perfluorinated Alkyl Substances (PFAS) Degradation in a Plasma-Based Water Treatment Process. Environ. Sci. Technol. 2019, 53, 2731–2738. [Google Scholar] [CrossRef]
- Nau-Hix, C.; Multari, N.; Singh, R.K.; Richardson, S.; Kulkarni, P.; Anderson, R.H.; Holsen, T.M.; Thagard, S.M. Field Demonstration of a Pilot-Scale Plasma Reactor for the Rapid Removal of Poly- and Perfluoroalkyl Substances in Groundwater. ACS EST Water 2021, 1, 680–687. [Google Scholar] [CrossRef]
- Klymenko, R.; de Kroon, E.; Agostinho, L.L.F.; Fuchs, E.C.; Woisetschläger, J.; Hoeben, W.F.L.M. Characterization of a Hyperbolic Vortex Plasma Reactor for the Removal of Aqueous Phase Micropollutants. J. Phys. D Appl. Phys. 2024, 57, 215204. [Google Scholar] [CrossRef]
- Palma, D.; Richard, C.; Minella, M. State of the Art and Perspectives about Non-Thermal Plasma Applications for the Removal of PFAS in Water. Chem. Eng. J. Adv. 2022, 10, 100253. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, S.; Chen, W.; Lin, J.; Yu, X.; Feng, M.; Wan, K. Removal of Per-and Polyfluoroalkyl Substances by Electron Beam and Plasma Irradiation: A Mini-Review. Water 2022, 14, 1684. [Google Scholar] [CrossRef]
- Isowamwen, O.; Li, R.; Holsen, T.; Thagard, S.M. Plasma-Assisted Degradation of a Short-Chain Perfluoroalkyl Substance (PFAS): Perfluorobutane Sulfonate (PFBS). J. Hazard. Mater. 2023, 456, 131691. [Google Scholar] [CrossRef]
- Donepudi, T.; van de Griend, M.; Agostinho, L.L.F.; de Kroon, E.J.; Klymenko, R.; Pecnik, R.; Woisetschläger, J.; Fuchs, E.C. Numerical Analysis of Vortex Dynamics in Hyperbolic Funnels Using Computational Fluid Dynamics. Phys. Fluids 2024, 36, 095171. [Google Scholar] [CrossRef]
- Klymenko, R.; Nanninga, H.; de Kroon, E.; Agostinho, L.L.F.; Fuchs, E.C.; Woisetschläger, J.; Hoeben, W.F.L.M. Preparation of Free-Surface Hyperbolic Water Vortices. J. Vis. Exp. 2023, 197, 64516. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.V.; DeMarini, D.M.; Stankowski, L.F.; Escobar, P.A.; Zeiger, E.; Howe, J.; Elespuru, R.; Cross, K.P. Are All Bacterial Strains Required by OECD Mutagenicity Test Guideline TG471 Needed? Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 848, 503081. [Google Scholar] [CrossRef] [PubMed]
- Flückiger-Isler, S.; Kamber, M. Direct Comparison of the Ames Microplate Format (MPF) Test in Liquid Medium with the Standard Ames Pre-Incubation Assay on Agar Plates by Use of Equivocal to Weakly Positive Test Compounds. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2012, 747, 36–45. [Google Scholar] [CrossRef]
- Ojo, A.F.; Peng, C.; Ng, J.C. Genotoxicity Assessment of Per- and Polyfluoroalkyl Substances Mixtures in Human Liver Cells (HepG2). Toxicology 2022, 482, 153359. [Google Scholar] [CrossRef]
- Ojo, A.F.; Peng, C.; Ng, J.C. Combined Effects and Toxicological Interactions of Perfluoroalkyl and Polyfluoroalkyl Substances Mixtures in Human Liver Cells (HepG2). Environ. Pollut. 2020, 263, 114182. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Windisch, M.; Klymenko, R.; Grießler, H.; Kittinger, C. Assessment of Cytotoxicity and Genotoxicity of Plasma-Treated Perfluorooctanesulfonate Containing Water Using In Vitro Bioassays. Toxics 2024, 12, 889. https://doi.org/10.3390/toxics12120889
Windisch M, Klymenko R, Grießler H, Kittinger C. Assessment of Cytotoxicity and Genotoxicity of Plasma-Treated Perfluorooctanesulfonate Containing Water Using In Vitro Bioassays. Toxics. 2024; 12(12):889. https://doi.org/10.3390/toxics12120889
Chicago/Turabian StyleWindisch, Markus, Roman Klymenko, Hannah Grießler, and Clemens Kittinger. 2024. "Assessment of Cytotoxicity and Genotoxicity of Plasma-Treated Perfluorooctanesulfonate Containing Water Using In Vitro Bioassays" Toxics 12, no. 12: 889. https://doi.org/10.3390/toxics12120889
APA StyleWindisch, M., Klymenko, R., Grießler, H., & Kittinger, C. (2024). Assessment of Cytotoxicity and Genotoxicity of Plasma-Treated Perfluorooctanesulfonate Containing Water Using In Vitro Bioassays. Toxics, 12(12), 889. https://doi.org/10.3390/toxics12120889