Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = plant-pollinator-microbe interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 353 KiB  
Review
Microbial Symbiont-Based Detoxification of Different Phytotoxins and Synthetic Toxic Chemicals in Insect Pests and Pollinators
by Olivia Kline and Neelendra K. Joshi
J. Xenobiot. 2024, 14(2), 753-771; https://doi.org/10.3390/jox14020043 - 4 Jun 2024
Cited by 5 | Viewed by 2814
Abstract
Insects are the most diverse form of life, and as such, they interact closely with humans, impacting our health, economy, and agriculture. Beneficial insect species contribute to pollination, biological control of pests, decomposition, and nutrient cycling. Pest species can cause damage to agricultural [...] Read more.
Insects are the most diverse form of life, and as such, they interact closely with humans, impacting our health, economy, and agriculture. Beneficial insect species contribute to pollination, biological control of pests, decomposition, and nutrient cycling. Pest species can cause damage to agricultural crops and vector diseases to humans and livestock. Insects are often exposed to toxic xenobiotics in the environment, both naturally occurring toxins like plant secondary metabolites and synthetic chemicals like herbicides, fungicides, and insecticides. Because of this, insects have evolved several mechanisms of resistance to toxic xenobiotics, including sequestration, behavioral avoidance, and enzymatic degradation, and in many cases had developed symbiotic relationships with microbes that can aid in this detoxification. As research progresses, the important roles of these microbes in insect health and function have become more apparent. Bacterial symbionts that degrade plant phytotoxins allow host insects to feed on otherwise chemically defended plants. They can also confer pesticide resistance to their hosts, especially in frequently treated agricultural fields. It is important to study these interactions between insects and the toxic chemicals they are exposed to in order to further the understanding of pest insect resistance and to mitigate the negative effect of pesticides on nontarget insect species like Hymenopteran pollinators. Full article
(This article belongs to the Special Issue Environmental Toxicology and Animal Health)
20 pages, 839 KiB  
Review
Secondary Metabolites in Nectar-Mediated Plant-Pollinator Relationships
by Marta Barberis, Daniele Calabrese, Marta Galloni and Massimo Nepi
Plants 2023, 12(3), 550; https://doi.org/10.3390/plants12030550 - 25 Jan 2023
Cited by 32 | Viewed by 7437
Abstract
In recent years, our understanding of the complex chemistry of floral nectar and its ecological implications for plant-pollinator relationships has certainly increased. Nectar is no longer considered merely a reward for pollinators but rather a plant interface for complex interactions with insects and [...] Read more.
In recent years, our understanding of the complex chemistry of floral nectar and its ecological implications for plant-pollinator relationships has certainly increased. Nectar is no longer considered merely a reward for pollinators but rather a plant interface for complex interactions with insects and other organisms. A particular class of compounds, i.e., nectar secondary compounds (NSCs), has contributed to this new perspective, framing nectar in a more comprehensive ecological context. The aim of this review is to draft an overview of our current knowledge of NSCs, including emerging aspects such as non-protein amino acids and biogenic amines, whose presence in nectar was highlighted quite recently. After considering the implications of the different classes of NSCs in the pollination scenario, we discuss hypotheses regarding the evolution of such complex nectar profiles and provide cues for future research on plant-pollinator relationships. Full article
(This article belongs to the Special Issue Floral Biology 2.0)
Show Figures

Figure 1

14 pages, 4431 KiB  
Article
Temporal Variability in the Rhizosphere Bacterial and Fungal Community Structure in the Melon Crop Grown in a Closed Hydroponic System
by Yu-Pin Lin, Chiao-Ming Lin, Hussnain Mukhtar, Hsiao-Feng Lo, Min-Chun Ko and Shu-Jen Wang
Agronomy 2021, 11(4), 719; https://doi.org/10.3390/agronomy11040719 - 9 Apr 2021
Cited by 10 | Viewed by 3103
Abstract
Microbes can establish a pathogenetic or symbiotic relationship with plants in soil and aquatic ecosystems. Although change in bacterial and fungal community in soil and their interaction with plants have been widely studied, little is known about their community structure in hydroponic systems [...] Read more.
Microbes can establish a pathogenetic or symbiotic relationship with plants in soil and aquatic ecosystems. Although change in bacterial and fungal community in soil and their interaction with plants have been widely studied, little is known about their community structure in hydroponic systems across plant growth stages under different nutrient treatments. This study used next-generation sequencing analysis to assess the temporal changes in melon rhizosphere bacterial and fungal community structure across six different nutrient treatments. We found significant changes in the microbial community composition (especially for bacteria) between growth stages (R = 0.25–0.63, p < 0.01) than nutrient treatments. Proteobacteria dominated the bacterial community at the phylum level across melon growth stages (59.8% ± 16.1%). The genera Chryseobacterium, Pseudomonas, and Massilia dominated the rhizosphere in the flowering and pollination stage, while Brevibacillius showed the highest relative abundance in the harvesting stage. However, the rhizosphere was dominated by uncultured fungal taxa, likely due to the application of fungicides (Ridomil MZ). Further, linear regression analysis revealed a weak influence of bacterial community structure on melon yield and quality, while fruit weight and quality moderately responded to Mg and K deficiency. Nevertheless, the relative abundance of bacterial genus Chryseobacterium in the vegetative stage showed a strong correlation with fruit weight (R2 = 0.75, p < 0.05), while genera Brevibacillus, Lysobacter, and Bosea in late growth stages strongly correlated with fruit sweetness. Overall, temporal variability in the microbial (especially bacterial) community structure exceeds the variability between nutrient treatments for the given range of nutrient gradient while having little influence on melon yield. Full article
(This article belongs to the Collection Nutrition Management of Hydroponic Vegetable Crops)
Show Figures

Figure 1

13 pages, 2496 KiB  
Article
Trichoderma Strains and Metabolites Selectively Increase the Production of Volatile Organic Compounds (VOCs) in Olive Trees
by Irene Dini, Roberta Marra, Pierpaolo Cavallo, Angela Pironti, Immacolata Sepe, Jacopo Troisi, Giovanni Scala, Pasquale Lombari and Francesco Vinale
Metabolites 2021, 11(4), 213; https://doi.org/10.3390/metabo11040213 - 31 Mar 2021
Cited by 31 | Viewed by 4325
Abstract
Plants emit volatile organic compounds (VOCs) that induce metabolomic, transcriptomic, and behavioral reactions in receiver organisms, including insect pollinators and herbivores. VOCs’ composition and concentration may influence plant-insect or plant-plant interactions and affect soil microbes that may interfere in plant-plant communication. Many Trichoderma [...] Read more.
Plants emit volatile organic compounds (VOCs) that induce metabolomic, transcriptomic, and behavioral reactions in receiver organisms, including insect pollinators and herbivores. VOCs’ composition and concentration may influence plant-insect or plant-plant interactions and affect soil microbes that may interfere in plant-plant communication. Many Trichoderma fungi act as biocontrol agents of phytopathogens and plant growth promoters. Moreover, they can stimulate plant defense mechanisms against insect pests. This study evaluated VOCs’ emission by olive trees (Olea europaea L.) when selected Trichoderma fungi or metabolites were used as soil treatments. Trichoderma harzianum strains M10, T22, and TH1, T. asperellum strain KV906, T. virens strain GV41, and their secondary metabolites harzianic acid (HA), and 6-pentyl-α-pyrone (6PP) were applied to olive trees. Charcoal cartridges were employed to adsorb olive VOCs, and gas chromatography mass spectrometry (GC-MS) analysis allowed their identification and quantification. A total of 45 volatile compounds were detected, and among these, twenty-five represented environmental pollutants and nineteen compounds were related to olive plant emission. Trichoderma strains and metabolites differentially enhanced VOCs production, affecting three biosynthetic pathways: methylerythritol 1-phosphate (MEP), lipid-signaling, and shikimate pathways. Multivariate analysis models showed a characteristic fingerprint of each plant-fungus/metabolite relationship, reflecting a different emission of VOCs by the treated plants. Specifically, strain M10 and the metabolites 6PP and HA enhanced the monoterpene syntheses by controlling the MEP pathway. Strains GV41, KV906, and the metabolite HA stimulated the hydrocarbon aldehyde formation (nonanal) by regulating the lipid-signaling pathway. Finally, Trichoderma strains GV41, M10, T22, TH1, and the metabolites HA and 6PP improve aromatic syntheses at different steps of the shikimate pathway. Full article
(This article belongs to the Special Issue Advances in Plant-Microbe Interactions Using Metabolomics Approaches)
Show Figures

Figure 1

12 pages, 1408 KiB  
Article
Diverse Diets with Consistent Core Microbiome in Wild Bee Pollen Provisions
by Rebecca M. Dew, Quinn S. McFrederick and Sandra M. Rehan
Insects 2020, 11(8), 499; https://doi.org/10.3390/insects11080499 - 4 Aug 2020
Cited by 28 | Viewed by 4920
Abstract
Bees collect pollen from flowers for their offspring, and by doing so contribute critical pollination services for our crops and ecosystems. Unlike many managed bee species, wild bees are thought to obtain much of their microbiome from the environment. However, we know surprisingly [...] Read more.
Bees collect pollen from flowers for their offspring, and by doing so contribute critical pollination services for our crops and ecosystems. Unlike many managed bee species, wild bees are thought to obtain much of their microbiome from the environment. However, we know surprisingly little about what plant species bees visit and the microbes associated with the collected pollen. Here, we addressed the hypothesis that the pollen and microbial components of bee diets would change across the range of the bee, by amplicon sequencing pollen provisions of a widespread small carpenter bee, Ceratina calcarata, across three populations. Ceratina calcarata was found to use a diversity of floral resources across its range, but the bacterial genera associated with pollen provisions were very consistent. Acinetobacter, Erwinia, Lactobacillus, Sodalis, Sphingomonas and Wolbachia were among the top ten bacterial genera across all sites. Ceratina calcarata uses both raspberry (Rubus) and sumac (Rhus) stems as nesting substrates, however nests within these plants showed no preference for host plant pollen. Significant correlations in plant and bacterial co-occurrence differed between sites, indicating that many of the most common bacterial genera have either regional or transitory floral associations. This range-wide study suggests microbes present in brood provisions are conserved within a bee species, rather than mediated by climate or pollen composition. Moving forward, this has important implications for how these core bacteria affect larval health and whether these functions vary across space and diet. These data increase our understanding of how pollinators interact with and adjust to their changing environment. Full article
(This article belongs to the Collection Bees and Their Symbionts)
Show Figures

Figure 1

Back to TopTop