Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = planar WBS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3120 KiB  
Article
Bone Scintigraphy in Cardiac Transthyretin-Related Amyloidosis: A Novel Time-Saving Tool for Semiquantitative Analysis, with Good Potential for Predicting Different Etiologies
by Susanna Mattoni, Maria Francesca Morrone, Giuseppe Della Gala, Sonia Elisa Prisco, Maurizio Sguazzotti, Giulia Saturi, Simone Longhi, Stefano Fanti, Rachele Bonfiglioli and Lidia Strigari
Appl. Sci. 2024, 14(21), 9982; https://doi.org/10.3390/app14219982 - 31 Oct 2024
Viewed by 1161
Abstract
(1) Background: The visual and semiquantitative analysis of Technetium-99metastable-3,3-diphospono-1,2-propanodicarboxylic acid (99mTc-DPD) bone scintigraphy is promising for diagnosing cardiac amyloidosis but time-consuming. We validated a faster method, the geometric mean (GM) method with a semi-automated workflow, for heart–whole body (WB) ratio (H/WBr), [...] Read more.
(1) Background: The visual and semiquantitative analysis of Technetium-99metastable-3,3-diphospono-1,2-propanodicarboxylic acid (99mTc-DPD) bone scintigraphy is promising for diagnosing cardiac amyloidosis but time-consuming. We validated a faster method, the geometric mean (GM) method with a semi-automated workflow, for heart–whole body (WB) ratio (H/WBr), heart retention (Hr), and WB retention (WBr) calculations compared to the classic method (CM) established in the literature. The capability of semiquantitative scintigraphy indexes to differentiate the etiology in transthyretin-related cardiac amyloidosis (cATTR) patients was investigated. (2) Methods: H/WBr, Hr, and WBr were calculated by extracting counts for WB, kidneys, bladder, and heart on early and late planar image scans and applying background, scan-time, and decay corrections, using CM and GM both on a referring workstation and on a semi-automated workflow in external software. The comparison between CM and GM was assessed with Pearson’s correlation, Lin’s Concordance Correlation Coefficient (CCC), and Bland–Altman analysis. H/WBr, Hr, and WBr and several clinical variables were used to implement LASSO, Random Forest (RF), and Neural Network (NN) models to predict mutated and wild-type ATTR etiologies. ROC curves and AUC were calculated. (3) Results: Hr, WBr, and H/WBr using CM and GM were highly correlated. Bland–Altman analysis between CM and GM showed biases of 0.12% [CI:0.04%;0.19%] for H/WBr, 0.07% [CI: 0.01%; 0.13%] for Hr, and -0.50% [CI: −1.22%; 0.22%] for WBr. LASSO and NN models had good performance in predicting etiologies with AUC values of 87.3% and 73.6%, respectively. The RF model showed a poorer AUC of 55.8%. (4) Conclusions: The GM in the assisted workflow was validated against the CM. LASSO and NN approaches allowed a good prediction performance to be obtained for patient etiology. Full article
Show Figures

Figure 1

17 pages, 1325 KiB  
Review
Whole-Body SPECT/CT: Protocol Variation and Technical Consideration—A Narrative Review
by Mansour M. Alqahtani
Diagnostics 2024, 14(16), 1827; https://doi.org/10.3390/diagnostics14161827 - 21 Aug 2024
Viewed by 2063
Abstract
Introducing a hybrid imaging approach, such as single-photon emission computerized tomography with X-ray computed tomography (SPECT)/CT, improves diagnostic accuracy and patient management. The ongoing advancement of SPECT hardware and software has resulted in the clinical application of novel approaches. For example, whole-body SPECT/CT [...] Read more.
Introducing a hybrid imaging approach, such as single-photon emission computerized tomography with X-ray computed tomography (SPECT)/CT, improves diagnostic accuracy and patient management. The ongoing advancement of SPECT hardware and software has resulted in the clinical application of novel approaches. For example, whole-body SPECT/CT (WB-SPECT/CT) studies cover multiple consecutive bed positions, similar to positron emission tomography-computed tomography (PET/CT). WB-SPECT/CT proves to be a helpful tool for evaluating bone metastases (BM), reducing equivocal findings, and enhancing user confidence, displaying effective performance in contrast to planar bone scintigraphy (PBS). Consequently, it is increasingly utilized and might substitute PBS, which leads to new questions and issues concerning the acquisition protocol, patient imaging time, and workflow process. Therefore, this review highlights various aspects of WB-SPECT/CT acquisition protocols that need to be considered to help understand WB-SPECT/CT workflow processes and optimize imaging protocols. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

12 pages, 1005 KiB  
Article
Initial Testing of an Approximated, Fast Calculation Procedure for Personalized Dosimetry in Radionuclide Therapy Based on Planar Whole-Body Scan and Monte-Carlo Specific Dose Rates from the OpenDose Project
by Davide Bianco, Carmela Nappi, Leandra Piscopo, Fabio Volpe, Mariarosaria Manganelli, Federica Volpicelli, Filomena Loffredo, Pasquale Totaro, Maria Quarto, Alberto Cuocolo and Michele Klain
Life 2022, 12(9), 1303; https://doi.org/10.3390/life12091303 - 25 Aug 2022
Cited by 3 | Viewed by 1938
Abstract
Individualized dosimetry in nuclear medicine is currently at least advisable in order to obtain the best risk–benefit balance in terms of the maximal dose to lesions and under-threshold doses to radiosensitive organs. This article aims to propose a procedure for fast dosimetric calculations [...] Read more.
Individualized dosimetry in nuclear medicine is currently at least advisable in order to obtain the best risk–benefit balance in terms of the maximal dose to lesions and under-threshold doses to radiosensitive organs. This article aims to propose a procedure for fast dosimetric calculations based on planar whole-body scintigraphy (WBS) images and developed to be employed in everyday clinical practice. Methods: For simplicity and legacy reasons, the method is based on planar imaging dosimetry, complemented with some assumptions on the radiopharmaceutical kinetics empirically derived from single-photon emission tomography/computed tomography (SPECT/CT) image analysis. The idea is to exploit a rough estimate of the time-integrated activity as has been suggested for SPECT/CT dosimetry but using planar images. The resulting further reduction in dose estimation accuracy is moderated by the use of a high-precision Monte-Carlo S-factor, such as those available within the OpenDose project. Results: We moved the problem of individualized dosimetry to a transformed space where comparing doses was imparted to the ICRP Average Male/Female computational phantom, resulting from an activity distribution related to patient’s pharmaceutical uptake. This is a fast method for the personalized dosimetric evaluation of radionuclide therapy, bearing in mind that the resulting doses are meaningful in comparison with thresholds calculated in the same framework. Conclusion: The simplified scheme proposed here can help the community, or even the single physician, establish a quantitative guide-for-the-eye approach to individualized dosimetry. Full article
Show Figures

Figure 1

18 pages, 5443 KiB  
Article
Evaluation of a High-Sensitivity Organ-Targeted PET Camera
by Justin Stiles, Brandon Baldassi, Oleksandr Bubon, Harutyun Poladyan, Vivianne Freitas, Anabel Scaranelo, Anna Marie Mulligan, Michael Waterston and Alla Reznik
Sensors 2022, 22(13), 4678; https://doi.org/10.3390/s22134678 - 21 Jun 2022
Cited by 15 | Viewed by 4666
Abstract
The aim of this study is to evaluate the performance of the Radialis organ-targeted positron emission tomography (PET) Camera with standardized tests and through assessment of clinical-imaging results. Sensitivity, count-rate performance, and spatial resolution were evaluated according to the National Electrical Manufacturers Association [...] Read more.
The aim of this study is to evaluate the performance of the Radialis organ-targeted positron emission tomography (PET) Camera with standardized tests and through assessment of clinical-imaging results. Sensitivity, count-rate performance, and spatial resolution were evaluated according to the National Electrical Manufacturers Association (NEMA) NU-4 standards, with necessary modifications to accommodate the planar detector design. The detectability of small objects was shown with micro hotspot phantom images. The clinical performance of the camera was also demonstrated through breast cancer images acquired with varying injected doses of 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (18F-FDG) and qualitatively compared with sample digital full-field mammography, magnetic resonance imaging (MRI), and whole-body (WB) PET images. Micro hotspot phantom sources were visualized down to 1.35 mm-diameter rods. Spatial resolution was calculated to be 2.3 ± 0.1 mm for the in-plane resolution and 6.8 ± 0.1 mm for the cross-plane resolution using maximum likelihood expectation maximization (MLEM) reconstruction. The system peak noise equivalent count rate was 17.8 kcps at a 18F-FDG concentration of 10.5 kBq/mL. System scatter fraction was 24%. The overall efficiency at the peak noise equivalent count rate was 5400 cps/MBq. The maximum axial sensitivity achieved was 3.5%, with an average system sensitivity of 2.4%. Selected results from clinical trials demonstrate capability of imaging lesions at the chest wall and identifying false-negative X-ray findings and false-positive MRI findings, even at up to a 10-fold dose reduction in comparison with standard 18F-FDG doses (i.e., at 37 MBq or 1 mCi). The evaluation of the organ-targeted Radialis PET Camera indicates that it is a promising technology for high-image-quality, low-dose PET imaging. High-efficiency radiotracer detection also opens an opportunity to reduce administered doses of radiopharmaceuticals and, therefore, patient exposure to radiation. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Radiation Detectors)
Show Figures

Figure 1

23 pages, 6783 KiB  
Article
Novel Bi-UWB on-Chip Antenna for Wireless NoC
by Hafedh Ibrahim Gaha and Moez Balti
Micromachines 2022, 13(2), 231; https://doi.org/10.3390/mi13020231 - 30 Jan 2022
Cited by 4 | Viewed by 3226
Abstract
Communication between on-chip cores is a challenging issue for high-performance network-on-chip (NoC) design. Wireless NoC (WiNoC) represents an alternative design for planar wired interconnects, aiming to reduce latency and improve bandwidth. In this paper, a novel on-chip fractal antenna is designed and characterized. [...] Read more.
Communication between on-chip cores is a challenging issue for high-performance network-on-chip (NoC) design. Wireless NoC (WiNoC) represents an alternative design for planar wired interconnects, aiming to reduce latency and improve bandwidth. In this paper, a novel on-chip fractal antenna is designed and characterized. In order to disseminate interference affecting NoC performance in order to enhance on-chip quality of service (QoS), a set of exclusive sub-channels are assigned to each antenna. The proposed antenna has two wide bands (bi-WB)—B1 and B2, of (63–78) GHz and (101–157) GHz, respectively. The multi-band antenna allows different channel allocations for on-chip core communications. This WiNoC design exhibits improved performance, due to its enhanced antenna bandwidth and the benefit provided by the developed algorithm that can scan and compare to assign the best (upload or download) sub-channels to each antenna. Full article
(This article belongs to the Special Issue Emerging Network-on-Chips (NoC) Architectures)
Show Figures

Graphical abstract

17 pages, 4479 KiB  
Article
Spectroscopic and Structural Study of a New Conducting Pyrazolium Salt
by Sylwia Zięba, Agata Piotrowska, Adam Mizera, Paweł Ławniczak, Karolina H. Markiewicz, Andrzej Gzella, Alina T. Dubis and Andrzej Łapiński
Molecules 2021, 26(15), 4657; https://doi.org/10.3390/molecules26154657 - 31 Jul 2021
Cited by 5 | Viewed by 3617
Abstract
The increase in conductivity with temperature in 1H-pyrazol-2-ium 2,6-dicarboxybenzoate monohydrate was analyzed, and the influence of the mobility of the water was discussed in this study. The electric properties of the salt were studied using the impedance spectroscopy method. WB97XD/6-311++G(d,p) calculations [...] Read more.
The increase in conductivity with temperature in 1H-pyrazol-2-ium 2,6-dicarboxybenzoate monohydrate was analyzed, and the influence of the mobility of the water was discussed in this study. The electric properties of the salt were studied using the impedance spectroscopy method. WB97XD/6-311++G(d,p) calculations were performed, and the quantum theory of atoms in molecules (QTAiM) approach and the Hirshfeld surface method were applied to analyze the hydrogen bond interaction. It was found that temperature influences the spectroscopic properties of pyrazolium salt, particularly the carbonyl and hydroxyl frequencies. The influence of water molecules, connected by three-center hydrogen bonds with co-planar tetrameters, on the formation of structural defects is also discussed in this report. Full article
Show Figures

Graphical abstract

24 pages, 10001 KiB  
Article
Load Bearing Capacity of Cohesive-Frictional Soils Reinforced with Full-Wraparound Geotextiles: Experimental and Numerical Investigation
by Gampanart Sukmak, Patimapon Sukmak, Suksun Horpibulsuk, Menglim Hoy and Arul Arulrajah
Appl. Sci. 2021, 11(7), 2973; https://doi.org/10.3390/app11072973 - 26 Mar 2021
Cited by 15 | Viewed by 4226
Abstract
This research investigated the effects of types of cohesive-frictional soil and geotextile reinforcement configurations on the bearing capacity of reinforced soil foundation (RSF) structures, via laboratory test and numerical simulation. The four reinforcement configurations studied for the RSF included: (i) horizontal planar form [...] Read more.
This research investigated the effects of types of cohesive-frictional soil and geotextile reinforcement configurations on the bearing capacity of reinforced soil foundation (RSF) structures, via laboratory test and numerical simulation. The four reinforcement configurations studied for the RSF included: (i) horizontal planar form of geotextile, (ii) full-wraparound ends of geotextile, (iii) full-wraparound ends of geotextile with filled-in sand, and (iv) full-wraparound ends of geotextile with filled-in sand and sand backfill. The foundation soils studied were mixtures of fine sand and sodium bentonite at replacement ratios of 0, 20, 40, 60, 80, and 100% by dry weight of sand to have various values of plasticity index (PI). The numerical analysis of RSF structures was performed using PLAXIS 2D software. Several factors were studied, which included: embedment depth of the top reinforcement layer (U), width of horizontal planar form of the reinforcement (W), and spacing between geotextile reinforcement layers (H). Number of reinforcement layers (N) was varied to determine the optimum parameters of U/B, W/B, H/B, and N, where B is the footing width. The most effective improvement technique was found for the full wraparound ends of geotextile with filled-in sand and sand backfill. The outcome of this research will provide a preliminary guideline in a design of RSF structure with different ground soils and other RSF structures with different geosynthetic types. Full article
(This article belongs to the Special Issue Trends and Prospects in Geotechnics)
Show Figures

Figure 1

13 pages, 2297 KiB  
Article
Dosimetry of 177Lu-PSMA-617 after Mannitol Infusion and Glutamate Tablet Administration: Preliminary Results of EUDRACT/RSO 2016-002732-32 IRST Protocol
by Anna Sarnelli, Maria Luisa Belli, Valentina Di Iorio, Emilio Mezzenga, Monica Celli, Stefano Severi, Elisa Tardelli, Silvia Nicolini, Devil Oboldi, Licia Uccelli, Corrado Cittanti, Manuela Monti, Mahila Ferrari and Giovanni Paganelli
Molecules 2019, 24(3), 621; https://doi.org/10.3390/molecules24030621 - 11 Feb 2019
Cited by 45 | Viewed by 5119
Abstract
Radio-ligand therapy (RLT) with177Lu-PSMA-617 is a promising option for patients with metastatic castration-resistant prostate-cancer (mCRPC). A prospective phase-II study (EUDRACT/RSO,2016-002732-32) on mCRPC is ongoing at IRST (Meldola, Italy). A total of 9 patients (median age: 68 y, range: 53–85) were enrolled [...] Read more.
Radio-ligand therapy (RLT) with177Lu-PSMA-617 is a promising option for patients with metastatic castration-resistant prostate-cancer (mCRPC). A prospective phase-II study (EUDRACT/RSO,2016-002732-32) on mCRPC is ongoing at IRST (Meldola, Italy). A total of 9 patients (median age: 68 y, range: 53–85) were enrolled for dosimetry evaluation of parotid glands (PGs), kidneys, red marrow (RM) and whole body (WB). Folic polyglutamate tablets were orally administered as PGs protectors and 500 mL of a 10% mannitol solution was intravenously infused to reduce kidney uptake. The whole body planar image (WBI) and blood samples were acquired at different times post infusion (1 h, 16–24 h, 36–48 h and 120 h). Dose calculation was performed with MIRD formalism (OLINDA/EXM software). The median effective half-life was 33.0 h (range: 25.6–60.7) for PGs, 31.4 h (12.2–80.6) for kidneys, 8.2 h (2.5–14.7) for RM and 40.1 h (31.6–79.7) for WB. The median doses were 0.48 mGy/MBq (range: 0.33–2.63) for PGs, 0.70 mGy/MBq (0.26–1.07) for kidneys, 0.044 mGy/MBq (0.023–0.067) for RM and 0.04 mGy/MBq (0.02–0.11) for WB. A comparison with previously published dosimetric data was performed and a significant difference was found for PGs while no significant difference was observed for the kidneys. For PGs, the possibility of reducing uptake by administering glutamate tablets during RLT seems feasible while further research is warranted for a more focused evaluation of the reduction in kidney uptake. Full article
Show Figures

Figure 1

Back to TopTop