Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = phototaxis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2848 KiB  
Article
Light-Guided Cyborg Beetles: An Analysis of the Phototactic Behavior and Steering Control of Endebius florensis (Coleoptera: Scarabaeidae)
by Tian-Hao Zhang, Zheng-Zhong Huang, Lei Jiang, Shen-Zhen Lv, Wen-Tao Zhu, Chao-Fan Zhang, Yi-Shi Shi and Si-Qin Ge
Biomimetics 2025, 10(8), 513; https://doi.org/10.3390/biomimetics10080513 - 6 Aug 2025
Abstract
Cyborg insects offer a biologically powered solution for locomotion control, but conventional methods typically rely on invasive electrical stimulation. Here, we introduce a noninvasive, phototaxis-based strategy to steer walking Endebius florensis beetles using light-emitting diode (LED) stimuli. Electroretinogram recordings revealed spectral sensitivity to [...] Read more.
Cyborg insects offer a biologically powered solution for locomotion control, but conventional methods typically rely on invasive electrical stimulation. Here, we introduce a noninvasive, phototaxis-based strategy to steer walking Endebius florensis beetles using light-emitting diode (LED) stimuli. Electroretinogram recordings revealed spectral sensitivity to blue, green, and yellow light, with reduced response to red. Behavioral assays demonstrated robust positive phototaxis to blue light and negative phototaxis to yellow. Using these findings, we built a wireless microcontroller-based backpack emitting directional blue light to induce steering. The beetles reliably turned toward the activated light, achieving angular deflections over 60° within seconds. This approach enables repeatable, trauma-free insect control and establishes a new paradigm for biohybrid locomotion systems. Full article
(This article belongs to the Special Issue Functional Morphology and Biomimetics: Learning from Insects)
Show Figures

Figure 1

15 pages, 2650 KiB  
Article
The Impact of Tetraethyl Pyrophosphate (TEPP) Pesticide on the Development and Behavior of Danio rerio: Evaluating the Potential of Cork Granules as a Natural Adsorbent for TEPP Removal from Aqueous Environments
by Fernanda Blini Marengo Malheiros, Lorrainy Victoria Rodrigues de Souza, Angélica Gois Morales, Eduardo Festozo Vicente, Paulo C. Meletti and Carlos Alberto-Silva
Clean Technol. 2025, 7(3), 54; https://doi.org/10.3390/cleantechnol7030054 - 28 Jun 2025
Viewed by 422
Abstract
Toxicological studies of pesticides in animal models provide critical insights into their mechanisms of action, while adsorption strategies offer potential solutions for decontaminating polluted waters. We evaluated toxicity induced by tetraethyl pyrophosphate (TEPP), an organophosphate pesticide and AChE inhibitor, on zebrafish (Danio [...] Read more.
Toxicological studies of pesticides in animal models provide critical insights into their mechanisms of action, while adsorption strategies offer potential solutions for decontaminating polluted waters. We evaluated toxicity induced by tetraethyl pyrophosphate (TEPP), an organophosphate pesticide and AChE inhibitor, on zebrafish (Danio rerio) development and behavior, alongside the efficacy of wine cork granules as a natural adsorbent. TEPP exposure reduced embryo viability following an inverted U-shaped dose–response curve, suggesting non-monotonic neurodevelopmental effects, but did not alter developmental timing or morphology in survivors. In juveniles, TEPP increased preference for dark environments (33% vs. controls) and enhanced swimming endurance approximately 3-fold, indicating disrupted phototaxis and stress responses. Most strikingly, water treated with cork granules retained toxicity, increasing mortality, delaying embryogenesis, and altering behavior. This directly contradicts in vitro adsorption studies that suggested cork’s efficacy. These results demonstrate the high sensitivity of zebrafish to TEPP at nanomolar concentrations, which contrasts with in vitro models that require doses approximately 1000 times higher. Our findings not only highlight TEPP’s ecological risks but also reveal unexpected limitations of cork granules for environmental remediation, urging caution in their application. Full article
(This article belongs to the Special Issue Pollutant Removal from Aqueous Solutions by Adsorptive Biomaterials)
Show Figures

Figure 1

17 pages, 1965 KiB  
Article
The Effect of the Antidepressant Citalopram on the Bioconcentration and Biomarker Response of Daphnia magna at Environmentally Relevant Concentrations
by Haohan Yang, Jiacheng Tan, Hanyu Jiang, Hao Xing, Jingnan Zhang, Dexin Kong, Zhuoyu Chen and Linghui Kong
Toxics 2025, 13(7), 532; https://doi.org/10.3390/toxics13070532 - 25 Jun 2025
Viewed by 363
Abstract
The widespread use and pseudo-persistent occurrence of the antidepressant citalopram (CIT) could pose a potential ecological risk in the aquatic environment. The message about the bioconcentration and sensitive biomarker identification of CIT at the environmentally relevant concentrations is limited. In this study, an [...] Read more.
The widespread use and pseudo-persistent occurrence of the antidepressant citalopram (CIT) could pose a potential ecological risk in the aquatic environment. The message about the bioconcentration and sensitive biomarker identification of CIT at the environmentally relevant concentrations is limited. In this study, an integral evaluation of the phenotypic and biochemical effects of CIT on Daphnia magna (D. magna) was conducted at 0.5 and 10 µg/L. The biomarker screening includes energy metabolism, phototactic behavior, feeding dysfunction, and antioxidant stress responses. The carbohydrate, lipid, and protein content was determined using the assay of anthrone with glucose as standard, thiophosphorate-Vaniline with cholesterol as standard, and Coomassie brilliant blue with serum albumin as standard, respectively. The results showed the bioconcentration equilibrium of CIT reached at the exposure duration of 48 h during the uptake process. At the exposure concentrations of 0.5 and 10 µg/L, the bioconcentration factor of CIT was 571.2 and 67.4 L/kg, respectively. Both protein and lipid content significantly increased at 0.5 µg/L with a 1.78-fold elevation in total energy. Comparatively, the lipid content showed a significant increase at 10 µg/L, while the available total energy rose by 1.25-fold relative to the control group. The phototactic behavior of D. magna exposed to 0.5 µg/L CIT was markedly reduced at 48 h relative to control. In contrast, a significant decrease in phototaxis was observed after 6 h and then a significant increase at 12 h with a continuously obvious decline at 10 µg/L. The filtration rates were increased by 32% compared to controls at 0.5 µg/L, while the stimulatory effects disappeared at 10 µg/L. With regarding to the antioxidant enzyme activities, CIT exposure significantly inhibited the catalase activity both at 0.5 and 10 µg/L, while the glutathione S-transferase activity was obviously induced at 0.5 µg/L and inhibited at 10 µg/L. The expression level of 18s gene was significantly decreased at 10 µg/L. Only the gst gene expression level was significantly increased at 0.5 µg/L, while the 18s and cat gene expression level was obviously inhibited and induced at 10 µg/L. Comprehensively, the responses of the phenotypic traits and energy metabolism of D. magna at various environmental concentrations were sensitive for CIT. This study provided basic data for the risk estimation of CIT in the real freshwater environment. Full article
(This article belongs to the Special Issue Oxidative Degradation and Toxicity of Environmental Pollutants)
Show Figures

Graphical abstract

13 pages, 1520 KiB  
Article
Phototaxis Characteristics of Lymantria xylina (Lepidoptera: Erebidae)
by Jifeng Zhang, Baode Wang, Rong Wang, Xiancheng Peng, Junnan Li, Changchun Xu, Yonghong Cui, Mengxia Liu and Feiping Zhang
Insects 2025, 16(4), 338; https://doi.org/10.3390/insects16040338 - 24 Mar 2025
Viewed by 596
Abstract
Lymantria xylina Swinhoe (Lepidoptera: Erebidae) is considered a potentially internationally invasive forest pest with limited knowledge about its phototactic behavior. This study investigated the phototaxis of L. xylina males and females using various insecticidal lamps in the field. The results showed that all [...] Read more.
Lymantria xylina Swinhoe (Lepidoptera: Erebidae) is considered a potentially internationally invasive forest pest with limited knowledge about its phototactic behavior. This study investigated the phototaxis of L. xylina males and females using various insecticidal lamps in the field. The results showed that all lamps attracted both males and females, but females were captured in a very low numbers, with a female-to-male ratio of 1:322. The insecticidal lamp with a peak wavelength of 363 nm was most effective for male trapping. Males exhibited a distinct light-trapping rhythm, peaking around midnight (23:00–0:00), with 29.5% capture, while females were most active at dusk (19:00–20:00), with 44.4% capture. Light-trapped females were smaller and lighter than indoor-emerged females and had lower egg-carrying capacity. Females, when laying eggs, did not exhibit phototactic behavior. Only 14.6% of non-ovipositing females showed phototactic behavior, and only 0.6% flew directly toward the lamp. These findings suggest that while non-ovipositing females can exhibit phototaxis, only a small proportion will, potentially reducing the risk of long-distance dispersal of L. xylina via ocean-going freighters. The results showed that the non-ovipositing females could fly under phototaxis, but their phototaxis was limited. This study provides a basis for the risk assessment of the long-distance dispersal of L. xylina via ocean-going freighters through female moth phototactic flight. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

18 pages, 1691 KiB  
Article
Enhanced Recovery of Food-Grade Euglena gracilis Biomass Through Synergistic pH-Modified Chitosan Flocculation and Green Light Stimulation
by Jiangyu Zhu, Lan Yang, Li Ding, Zhengfei Yang, Yongqi Yin, Minato Wakisaka, Shahram Ashouri, Mohammadhadi Jazini and Weiming Fang
Microorganisms 2025, 13(2), 303; https://doi.org/10.3390/microorganisms13020303 - 30 Jan 2025
Cited by 3 | Viewed by 1104
Abstract
The efficient and cost-effective harvesting of food-grade Euglena gracilis remains a critical challenge in microalgal food production. This study presents an innovative, food-safe approach integrating pH preconditioning, chitosan biopolymer flocculation, and green light irradiation to leverage E. gracilis’ natural phototactic behavior. Response surface [...] Read more.
The efficient and cost-effective harvesting of food-grade Euglena gracilis remains a critical challenge in microalgal food production. This study presents an innovative, food-safe approach integrating pH preconditioning, chitosan biopolymer flocculation, and green light irradiation to leverage E. gracilis’ natural phototactic behavior. Response surface methodology optimized the parameters (pH 6.49, 46.10 mg·L−1 chitosan, and 60 min green light), achieving 93.07% biomass recovery, closely matching the predicted 92.21%. The synergistic effects of pH-modified chitosan flocculation and phototaxis significantly enhanced the harvesting efficiency compared to conventional methods. Notably, harvested cells maintained substantial photosynthetic capability, as evidenced by chlorophyll fluorescence analysis, ensuring the preservation of nutritional quality. Economic analysis revealed exceptional harvesting cost-effectiveness at 2.35 USD per kg of dry weight biomass harvested. The method’s use of food-grade chitosan and non-invasive light stimulation ensures product safety while minimizing the environmental impact. This sustainable and economical approach offers a promising solution for industrial-scale production of food-grade E. gracilis while demonstrating potential applicability to other phototactic microalgae species. Full article
(This article belongs to the Special Issue Microalgal Biotechnology: Innovations and Applications)
Show Figures

Figure 1

12 pages, 3141 KiB  
Article
Transcriptomic Characterization of Phototransduction Genes of the Asian Citrus Psyllid Diaphorina citri Kuwayama
by Shao-Ping Chen, Xue-Mei Chu, Mei-Xiang Chi, Jian Zhao and Rong-Zhou Qiu
Insects 2024, 15(12), 966; https://doi.org/10.3390/insects15120966 - 4 Dec 2024
Viewed by 1245
Abstract
Opsin plays a regulatory role in phototaxis of Diaphorina citri, functioning as the initial station in the phototransduction cascade. Our study aimed to explore the D. citri phototransduction pathway to identify elicitors that may enhance D. citri phototaxis in the future. The [...] Read more.
Opsin plays a regulatory role in phototaxis of Diaphorina citri, functioning as the initial station in the phototransduction cascade. Our study aimed to explore the D. citri phototransduction pathway to identify elicitors that may enhance D. citri phototaxis in the future. The RNAi technique was employed to inhibit LW-opsin gene expression, followed by RNA-Seq analysis to identify phototransduction genes. Finally, RT-qPCR was performed to validate whether genes in the phototransduction pathway were affected by the inhibition of LW-opsin expression. A total of 87 genes were identified within the transcriptome as involved in phototransduction based on KEGG functional annotation. Of these, 71 genes were identified as enriched in the phototransduction-fly pathway. These genes encode key proteins in this process, including Gqα, Gqβ, Gqγ, phospholipase C β (PLCβ), the cation channel transient receptor potential (TRP), and TRP-like (TRPL), among others. Moreover, the LOC103513214 (Gqβ) and LOC103518375 (ninaC) genes exhibited reduced expression when LW-opsin gene expression was suppressed. Our results provide a basis for further investigation of phototransduction in D. citri. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

16 pages, 3034 KiB  
Article
Kinematic and Aerodynamic Analysis of a Coccinella septempunctata Performing Banked Turns in Climbing Flight
by Lili Yang, Zhifei Fang and Huichao Deng
Biomimetics 2024, 9(12), 720; https://doi.org/10.3390/biomimetics9120720 - 22 Nov 2024
Viewed by 949
Abstract
Many Coccinella septempunctata flights, with their precise positioning capabilities, have provided rich inspiration for designing insect-styled micro air vehicles. However, researchers have not widely studied their flight ability. In particular, research on the maneuverability of Coccinella septempunctata using integrated kinematics and aerodynamics is [...] Read more.
Many Coccinella septempunctata flights, with their precise positioning capabilities, have provided rich inspiration for designing insect-styled micro air vehicles. However, researchers have not widely studied their flight ability. In particular, research on the maneuverability of Coccinella septempunctata using integrated kinematics and aerodynamics is scarce. Using three orthogonally positioned high-speed cameras, we captured the Coccinella septempunctata’s banking turns in the climbing flight in the laboratory. We used the measured wing kinematics in a Navier–Stokes solver to compute the aerodynamic forces acting on the insects in five cycles. Coccinella septempunctata can rapidly climb and turn during phototaxis or avoidance of predators. During banked turning in climbing flight, the translational part of the body, and the distance flown forward and upward, is much greater than the distance flown to the right. The rotational part of the body, through banking and manipulating the amplitude of the insect flapping angle, the stroke deviation angle, and the rotation angle, actively creates the asymmetrical lift and drag coefficients of the left and right wings to generate right turns. By implementing banked turns during the climbing flight, the insect can adjust its flight path more flexibly to both change direction and maintain or increase altitude, enabling it to effectively avoid obstacles or track moving targets, thereby saving energy to a certain extent. This strategy is highly beneficial for insects flying freely in complex environments. Full article
(This article belongs to the Special Issue Bio-Inspired Fluid Flows and Fluid Mechanics)
Show Figures

Figure 1

17 pages, 8343 KiB  
Article
Ultrastructure and Spectral Characteristics of the Compound Eye of Asiophrida xanthospilota (Baly, 1881) (Coleoptera, Chrysomelidae)
by Zu-Long Liang, Tian-Hao Zhang, Jacob Muinde, Wei-Li Fan, Ze-Qun Dong, Feng-Ming Wu, Zheng-Zhong Huang and Si-Qin Ge
Insects 2024, 15(7), 532; https://doi.org/10.3390/insects15070532 - 13 Jul 2024
Cited by 1 | Viewed by 2015
Abstract
In this study, the morphology and ultrastructure of the compound eye of Asi. xanthospilota were examined by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-computed tomography (μCT), and 3D reconstruction. Spectral sensitivity was investigated by electroretinogram (ERG) tests and phototropism experiments. [...] Read more.
In this study, the morphology and ultrastructure of the compound eye of Asi. xanthospilota were examined by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-computed tomography (μCT), and 3D reconstruction. Spectral sensitivity was investigated by electroretinogram (ERG) tests and phototropism experiments. The compound eye of Asi. xanthospilota is of the apposition type, consisting of 611.00 ± 17.53 ommatidia in males and 634.8 0 ± 24.73 ommatidia in females. Each ommatidium is composed of a subplano-convex cornea, an acone consisting of four cone cells, eight retinular cells along with the rhabdom, two primary pigment cells, and about 23 secondary pigment cells. The open type of rhabdom in Asi. xanthospilota consists of six peripheral rhabdomeres contributed by the six peripheral retinular cells (R1~R6) and two distally attached rhabdomeric segments generated solely by R7, while R8 do not contribute to the rhabdom. The orientation of microvilli indicates that Asi. xanthospilota is unlikely to be a polarization-sensitive species. ERG testing showed that both males and females reacted to stimuli from red, yellow, green, blue, and ultraviolet light. Both males and females exhibited strong responses to blue and green light but weak responses to red light. The phototropism experiments showed that both males and females exhibited positive phototaxis to all five lights, with blue light significantly stronger than the others. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

10 pages, 509 KiB  
Article
Phototactic Changes in Phthorimaea absoluta Long-Wavelength Opsin Gene Mutants (LW2−/−) and Short-Wavelength Opsin Gene Mutant (BL−/−) Strains
by Yanhong Tang, Xiaodi Wang, Jianyang Guo, Nianwan Yang, Dongfang Ma, Fanghao Wan, Chi Zhang, Zhichuang Lü, Jianying Guo and Wanxue Liu
Insects 2024, 15(6), 433; https://doi.org/10.3390/insects15060433 - 7 Jun 2024
Viewed by 1303
Abstract
Phthorimaea absoluta (Meyrick) is an invasive pest that has caused damage to tomatoes and other crops in China since 2017. Pest control is mainly based on chemical methods that pose significant threats to food safety and environmental and ecological security. Light-induced control, a [...] Read more.
Phthorimaea absoluta (Meyrick) is an invasive pest that has caused damage to tomatoes and other crops in China since 2017. Pest control is mainly based on chemical methods that pose significant threats to food safety and environmental and ecological security. Light-induced control, a green prevention and control technology, has gained attention recently. However, current light-trapping technology is non-specific, attracting targeted pests alongside natural enemies and non-target organisms. In this study, we characterized the phototactic behavior of tomato leaf miners for the development a specific light-trapping technology for pest control. In situ hybridization revealed opsin expression throughout the body. Furthermore, we investigated the tropism of pests (wild T. absoluta, Toxoptera graminum, and Bemisia tabaci) and natural enemies (Nesidiocoris tenuis and Trichogramma pintoi) using a wavelength-lamp tropism experiment. We found that 365 ± 5 nm light could accurately trap wild P. absoluta without trapping natural enemies and other insects. Finally, we analyzed the phototactic behavior of the mutant strains LW2(−/−) and BL(−/−). LW2 and BL mutants showed significant differences in phototactic behavior. The LW2(−/−) strain was attracted to light at 390 ± 5 nm and the BL(−/−) strain was unresponsive to any light. Our findings will help to develop specific light-trapping technology for controlling tomato leaf miners, providing a basis for understanding pest population dynamics and protecting crops against natural enemies. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

17 pages, 2994 KiB  
Article
Disparities in Body Color Adaptability and Ambient Light Color Preference between Wild and Hatchery-Reared Marbled Rockfish (Sebastiscus marmoratus)
by Yulu Qi, Chenhui Liu, Guozi Yuan, Haoyu Guo, Joacim Näslund, Yucheng Wang, Jiangfeng Ru, Yingying Ou, Xuejun Chai and Xiumei Zhang
Animals 2024, 14(11), 1701; https://doi.org/10.3390/ani14111701 - 5 Jun 2024
Cited by 3 | Viewed by 1430
Abstract
Hatchery rearing significantly influences the phenotypic development of fish, with potential adverse effects for the post-release performance of hatchery-reared individuals in natural environments, especially when targeted for stock enhancement. To assess the suitability of releasing hatchery-reared fish, a comprehensive understanding of the phenotypic [...] Read more.
Hatchery rearing significantly influences the phenotypic development of fish, with potential adverse effects for the post-release performance of hatchery-reared individuals in natural environments, especially when targeted for stock enhancement. To assess the suitability of releasing hatchery-reared fish, a comprehensive understanding of the phenotypic effects of captive rearing, through comparisons with their wild conspecifics, is essential. In this study, we investigated the divergence in body coloration between wild and hatchery-reared marbled rockfish Sebastiscus marmoratus. We examined the selection preferences for different light colors and assessed the impact of different ambient light colors on the morphological color-changing ability of juvenile marbled rockfish. Our findings revealed significant differences in body color between wild and hatchery-reared marbled rockfish. The hue and saturation values of wild marbled rockfish were significantly higher than those of their hatchery-reared counterparts, indicative of deeper and more vibrant body coloration in the wild population. Following a ten-day rearing period under various light color environments, the color of wild marbled rockfish remained relatively unchanged. In contrast, hatchery-reared marbled rockfish tended to change their color, albeit not reaching wild-like coloration. Light color preference tests demonstrated that wild juvenile marbled rockfish exhibited a preference for a red-light environment, while hatchery-reared individuals showed a similar but weaker response. Both wild and hatchery-reared marbled rockfish displayed notable negative phototaxis in the presence of yellow and blue ambient light. These results highlight the impact of hatchery rearing conditions on the body color and morphological color-changing ability, and provide insight into light color selection preferences of marbled rockfish. To mitigate the divergence in phenotypic development and produce more wild-like fish for stocking purposes, modifications to the hatchery environment, such as the regulation of ambient light color, should be considered. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

13 pages, 3187 KiB  
Article
Shy and Bold Fish Have the Same Preference for Light Color Selection
by Qingqing Zou, Weiwei Li, Chaoshuo Zhang, Jianghui Bao, Huafei Lyu and Ming Duan
Animals 2024, 14(11), 1583; https://doi.org/10.3390/ani14111583 - 27 May 2024
Cited by 2 | Viewed by 1994
Abstract
Personality, which matters for animal welfare, demonstrates behavioral differences. Light is one of the most important factors in aquaculture. However, how fish personality affects light color selection is unclear. In this study, we tested the personality of yellow catfish Pelteobagrus fulvidraco juveniles and [...] Read more.
Personality, which matters for animal welfare, demonstrates behavioral differences. Light is one of the most important factors in aquaculture. However, how fish personality affects light color selection is unclear. In this study, we tested the personality of yellow catfish Pelteobagrus fulvidraco juveniles and then quantified the selective behaviors of different personalities under six light colors: violet (410–420 nm), yellow (580–590 nm), green (550–560 nm), red (620–630 nm), blue (470–480 nm), and white. The results showed that juveniles preferred the yellow and green light over the other colors of light, probably due to different reasons. The average cumulative dwell time in yellow (32.81 ± 5.22%), green (21.81 ± 3.58%), and red (26.36 ± 4.89%) lights was significantly longer than the other light colors, and the average visit frequency in green light (32.00 ± 4.93%) was the most. Juveniles had the longest total moved distance in green light. Moreover, the results demonstrated that shy and bold individuals had the same preference for the green light. Bold individuals could find the preferred light colors rapidly and make quick decisions for light color selection. After identifying the preferred light colors, bold individuals reduced the frequency of exploration. This study provides a theoretical basis for the welfare of juvenile yellow catfish in aquaculture. Full article
(This article belongs to the Collection Behavioral Ecology of Aquatic Animals)
Show Figures

Figure 1

18 pages, 4499 KiB  
Article
Investigating the Influence of Varied Light-Emitting Diode (LED) Wavelengths on Phototactic Behavior and Opsin Genes in Vespinae
by Xiaojuan Huang, Tong Zhou, Hasin Ullah, Danyang Zhu, Yan Tang, Hongli Xu, Hang Wang and Jiangli Tan
Animals 2024, 14(11), 1543; https://doi.org/10.3390/ani14111543 - 23 May 2024
Viewed by 1247
Abstract
The phototactic behavior of insects is commonly used to manage pest populations in practical production. However, this elusive behavior is not yet fully understood. Investigating whether the opsin genes play a crucial role in phototaxis is an intriguing topic. Vespinae (Hymenoptera: Vespidae) are [...] Read more.
The phototactic behavior of insects is commonly used to manage pest populations in practical production. However, this elusive behavior is not yet fully understood. Investigating whether the opsin genes play a crucial role in phototaxis is an intriguing topic. Vespinae (Hymenoptera: Vespidae) are a common group of social wasps that are closely associated with human activities. Efficiently controlling wasp populations while maintaining ecological balance is a pressing global challenge that still has to be resolved. This research aims to explore the phototactic behavior and key opsin genes associated with Vespinae. We found significant differences in the photophilic rates of Vespula germanica and Vespa analis under 14 different light conditions, indicating that their phototactic behavior is rhythmic. The results also showed that the two species exhibited varying photophilic rates under different wavelengths of light, suggesting that light wavelength significantly affects their phototactic behavior. Additionally, the opsin genes of the most aggressive hornet, Vespa basalis, have been sequenced. There are only two opsin genes, one for UV light and the other for blue light, and Vespa basalis lacks long-wavelength visual proteins. However, they exhibit peak phototaxis for long-wavelength light and instead have the lowest phototaxis for UV light. This suggests that the visual protein genes have a complex regulatory mechanism for phototactic behavior in Vespinae. Additionally, visual protein sequences have a high degree of homology among Hymenoptera. Despite the hypotheses put forward by some scholars regarding phototaxis, a clear and complete explanation of insect phototaxis is still lacking to date. Our findings provide a strong theoretical basis for further investigation of visual expression patterns and phototactic mechanisms in Vespinae. Full article
(This article belongs to the Section Human-Animal Interactions, Animal Behaviour and Emotion)
Show Figures

Figure 1

12 pages, 4832 KiB  
Article
Fault-Tolerant Phototaxis of a Modular System Inspired by Gonium pectorale Using Phase-Based Control
by Kohei Nishikawa, Yuki Origane, Hiroki Etchu and Daisuke Kurabayashi
Symmetry 2024, 16(5), 630; https://doi.org/10.3390/sym16050630 - 19 May 2024
Viewed by 1197
Abstract
In this study, we proposed a model for modular robots in which autonomous decentralized modules adaptively organize their behavior. The phototaxis of Gonium pectorale, a species of volvocine algae, was modeled as a modular system, and a fault-tolerant modular control method of [...] Read more.
In this study, we proposed a model for modular robots in which autonomous decentralized modules adaptively organize their behavior. The phototaxis of Gonium pectorale, a species of volvocine algae, was modeled as a modular system, and a fault-tolerant modular control method of phototaxis was proposed for it. The proposed method was based on the rotation phase of the colony and adaptively adjusted an internal response-related parameter to enhance the fault tolerance of the system. Compared to a constant parameter approach, the simulation results demonstrated a significant improvement in the phototaxis time for positive and negative phototaxis during module failures. This method contributes to achieving autonomous, decentralized, and purposeful mediation of the modules necessary for controlling modular robots. Full article
(This article belongs to the Special Issue Symmetry in Robot Design and Application)
Show Figures

Figure 1

17 pages, 2103 KiB  
Article
Comparing the Developmental Toxicity Delay and Neurotoxicity of Benzothiazole and Its Derivatives (BTHs) in Juvenile Zebrafish
by Xiaogang Yin, Lei Wang and Lianshan Mao
Toxics 2024, 12(5), 341; https://doi.org/10.3390/toxics12050341 - 7 May 2024
Cited by 2 | Viewed by 2024
Abstract
In this study, a semi-static water exposure method was employed to investigate the early developmental and neurotoxic effects of four benzothiazole substances (BTHs), namely benzothiazole (BTH), 2-mercaptobenzothiazole (MBT), 2-hydroxybenzothiazole (BTON), and 2-aminobenzothiazole (2-ABTH), on zebrafish at an equimolar concentration of 10 μM. The [...] Read more.
In this study, a semi-static water exposure method was employed to investigate the early developmental and neurotoxic effects of four benzothiazole substances (BTHs), namely benzothiazole (BTH), 2-mercaptobenzothiazole (MBT), 2-hydroxybenzothiazole (BTON), and 2-aminobenzothiazole (2-ABTH), on zebrafish at an equimolar concentration of 10 μM. The findings revealed that all four BTHs exerted certain impacts on early development in zebrafish. MBT stimulated spontaneous movement in juvenile zebrafish, whereas BTON inhibited such movements. Moreover, all four BTHs hindered the hatching process of zebrafish larvae, with MBT exhibiting the strongest inhibition at 24 h post-fertilization (hpf). Notably, MBT acted as a melanin inhibitor by suppressing melanin production in juvenile zebrafish eyes and weakening phototaxis. Additionally, both BTH and BTON exhibited significantly lower speeds than the control group and other test groups under conditions without bright field stimulation; however, their speeds increased to average levels after percussion stimulation, indicating no significant alteration in motor ability among experimental zebrafish groups. Short-term exposure to these four types of BTHs induced oxidative damage in zebrafish larvae; specifically, BTH-, MBT-, and BTON-exposed groups displayed abnormal expression patterns of genes related to oxidative damage. Exposure to both BTH and MBT led to reduced fluorescence intensity in transgenic zebrafish labeled with central nervous system markers, suggesting inhibition of central nervous system development. Furthermore, real-time quantitative PCR results demonstrated abnormal gene expression associated with neural development. However, no significant changes were observed in 2-ABTH gene expression at this concentration. Overall findings indicate that short-term exposure to BTHs stimulates neurodevelopmental gene expression accompanied by oxidative damage. Full article
Show Figures

Figure 1

15 pages, 2370 KiB  
Article
Changes in Gravitaxis and Gene-Expression in an Euglena gracilis Culture over Time
by Julia Krüger, Peter Richter, Julia Stoltze, Binod Prasad, Sebastian M. Strauch, Marcus Krüger, Adeel Nasir and Michael Lebert
Biomolecules 2024, 14(3), 327; https://doi.org/10.3390/biom14030327 - 9 Mar 2024
Viewed by 2388
Abstract
Age-dependent changes in the transcription levels of 5-day-old Euglena gracilis cells, which showed positive gravitaxis, 6-day-old cells without gravitactic orientation, and older cells (9- and 11-day-old, which displayed a precise negative gravitaxis) were determined through microarray analysis. Hierarchical clustering of four independent cell [...] Read more.
Age-dependent changes in the transcription levels of 5-day-old Euglena gracilis cells, which showed positive gravitaxis, 6-day-old cells without gravitactic orientation, and older cells (9- and 11-day-old, which displayed a precise negative gravitaxis) were determined through microarray analysis. Hierarchical clustering of four independent cell cultures revealed pronounced similarities in transcription levels at the same culture age, which proves the reproducibility of the cultivation method. Employing the non-oriented cells from the 6-day-old culture as a reference, about 2779 transcripts were found to be differentially expressed. While positively gravitactic cells (5-day-old culture) showed only minor differences in gene expression compared to the 6-day reference, pronounced changes of mRNAs (mainly an increase) were found in older cells compared to the reference culture. Among others, genes coding for adenylyl cyclases, photosynthesis, and metabolic enzymes were identified to be differentially expressed. The investigated cells were grown in batch cultures, so variations in transcription levels most likely account for factors such as nutrient depletion in the medium and self-shading. Based on these findings, a particular transcript (e.g., transcript 19556) was downregulated using the RNA interference technique. Gravitaxis and phototaxis were impaired in the transformants, indicating the role of this transcript in signal transduction. Results of the experiment are discussed regarding the increasing importance of E. gracilis in biotechnology as a source of valuable products and the possible application of E. gracilis in life-support systems. Full article
Show Figures

Figure 1

Back to TopTop