Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = photonic frequency shifter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2529 KB  
Article
A Filter-Free, Image-Reject, Sub-Harmonic Downconverted RoF Link Without Fiber-Dispersion-Induced Power Fading
by Yuanyuan Li, Qiong Zhao and Wu Zhang
Photonics 2024, 11(12), 1191; https://doi.org/10.3390/photonics11121191 - 19 Dec 2024
Viewed by 906
Abstract
A filter-free, image-reject, sub-harmonic downconverted RoF link is proposed based on a dual-polarization quadrature phase-shift keying (DP–QPSK) modulator. At the remote antenna unit, the receiving radio frequency signal is applied to the upper QPSK modulator to achieve carrier-suppressed single-sideband (CS–SSB) modulation. The local [...] Read more.
A filter-free, image-reject, sub-harmonic downconverted RoF link is proposed based on a dual-polarization quadrature phase-shift keying (DP–QPSK) modulator. At the remote antenna unit, the receiving radio frequency signal is applied to the upper QPSK modulator to achieve carrier-suppressed single-sideband (CS–SSB) modulation. The local oscillator (LO) is applied to the lower QPSK modulator, achieving sub-harmonic single-sideband (SH–SSB) modulation. The I/Q mixing is realized by exploiting a two-channel photonic microwave phase shifter, which mainly consists of a modulator, two polarization controllers, and two polarizers. The image interference signal can be rejected when combing the I and Q IF signals through a 90° electrical hybrid. Because the scheme is simple and filter-free, it has a good image-reject capability over a large frequency tunable range. Moreover, due to the special SH-SSB modulation, the modulated signals are immune to the chromatic dispersion-introduced power fading effect. Last, the sub-harmonic downconverter can decrease the frequency requirement of the LO signal. Experimental results show that an image rejection ratio (IRR) greater than 50 dB can be achieved when transmitted through a 25 km single-mode fiber (SMF). Simultaneously, under different RF signals and IF signals, the IRR has no periodic power fading, only small fluctuations. Image rejection capability of the scheme for the 50-MBaud 16-QAM wideband vector signal is also verified and the demodulation of the desired IF signal with a good EVM of less than 5% is realized. Full article
(This article belongs to the Special Issue New Perspectives in Microwave Photonics)
Show Figures

Figure 1

9 pages, 3374 KB  
Communication
A Microwave Photonic Frequency-Doubling Phase Shifter Based on Dual-Parallel Mach–Zehnder Modulators
by Jun Su and Wenkai Chen
Photonics 2024, 11(2), 116; https://doi.org/10.3390/photonics11020116 - 26 Jan 2024
Viewed by 1740
Abstract
A microwave photonic frequency-doubling phase shifter with a broad bandwidth and large tuning range is proposed in this paper. Frequency doubling and phase shifting are realized by processing the input microwave signal in the optical domain at a dual-drive dual-parallel Mach–Zehnder modulator (DD-DPMZM) [...] Read more.
A microwave photonic frequency-doubling phase shifter with a broad bandwidth and large tuning range is proposed in this paper. Frequency doubling and phase shifting are realized by processing the input microwave signal in the optical domain at a dual-drive dual-parallel Mach–Zehnder modulator (DD-DPMZM) and a dual-parallel Mach–Zehnder modulator (DPMZM). The input signal is split into two branches through a 90-degree hybrid splitter. One signal is sent to the DD-DPMZM to achieve a phase-shifted carrier-suppressed up-sideband by tuning the bias voltage, and the other is sent to the DPMZM to realize a carrier-suppressed down-sideband. By beating the phase-shifted up-sideband and the down-sideband at a photodetector (PD), the input signal is frequency doubled and phase shifted. The proposed frequency-doubling phase shifter is simulated. The results show that the frequency-doubled signal has a phase-tuning range from 0 to 360 degrees. In addition, the influence of the amplitude and phase unbalance of the 90-degree hybrid splitter on the magnitude variation and phase deviation of the frequency-doubling phase shifter is studied. Full article
(This article belongs to the Special Issue The Development and Future Prospect of Microwave Photonics)
Show Figures

Figure 1

15 pages, 1008 KB  
Article
A Novel Reconfigurable Nonlinear Cascaded MZM Mixer, Amplitude Shift Key Modulator (ASK), Frequency Hopping and Phase Shifter
by Ebrahim Darabi, Heidar Keshavarz and Paulo Monteiro
Photonics 2023, 10(8), 916; https://doi.org/10.3390/photonics10080916 - 9 Aug 2023
Cited by 5 | Viewed by 1797
Abstract
A novel reconfigurable Microwave Photonics (MWP) mixer is presented in this paper, which can be configured to work as a frequency hopper, ASK modulator and phase shifter. This mixer is based on a cascaded Mach–Zehnder Modulator (MZM) structure. A general nonlinear analytical model [...] Read more.
A novel reconfigurable Microwave Photonics (MWP) mixer is presented in this paper, which can be configured to work as a frequency hopper, ASK modulator and phase shifter. This mixer is based on a cascaded Mach–Zehnder Modulator (MZM) structure. A general nonlinear analytical model for the structure is presented. This model is platform free, which means it can be applied to several MWP and integrated MWP platforms. Based on the analytical model, the performance of the structure and output results, such as the optical and electrical spectrum of the structure, are derived in mathematical closed-form expressions. The results of the presented analytical model are compared and evaluated with the results obtained from the simulation to prove the correctness of the analytical model. The presented structure has a simple form, which can be fabricated at a low cost. In addition, according to the obtained results from the analytical model, there is no need to change the arrangement of the structure to operate in any of the mentioned configurations, and the desired function is achievable only by changing the bias voltage of the modulators at the desired frequency. Full article
(This article belongs to the Special Issue Optical Technologies Supporting 5G/6G Mobile Networks)
Show Figures

Figure 1

11 pages, 2193 KB  
Communication
Broadband Microwave Photonic Channelizer with 18 Channels Based on Acousto-Optic Frequency Shifter
by Bo Chen, Qunfeng Dong, Biao Cao, Weile Zhai and Yongsheng Gao
Photonics 2023, 10(2), 107; https://doi.org/10.3390/photonics10020107 - 20 Jan 2023
Cited by 2 | Viewed by 2200
Abstract
A microwave photonic channelizer can achieve instantaneous reception of ultra-wideband signals and effectively avoid electronic bottleneck; therefore, it can be perfectly applied to a wideband radar system and electronic warfare. In channelization schemes based on an optical frequency comb (OFC), the number of [...] Read more.
A microwave photonic channelizer can achieve instantaneous reception of ultra-wideband signals and effectively avoid electronic bottleneck; therefore, it can be perfectly applied to a wideband radar system and electronic warfare. In channelization schemes based on an optical frequency comb (OFC), the number of comb lines usually depends on that of the sub-channels. In order to improve the utilization rate of the comb lines of OFC, we propose a scheme to shift the frequency of OFC by using an acousto-optic frequency shifter (AOFS), which can obtain three times the number of sub-channels of the comb lines of an OFC. In order to simplify the experiment, only a three-line OFC is used in the experiment. A three-line local oscillator (LO) OFC is frequency-shifted up and down by two AOFSs, and nine optical LO signals with different frequencies are obtained, thereby realizing the simultaneous reception of eighteen sub-channels. The proposed scheme enjoys a large number of sub-channels and minimal channel crosstalk. Experimental results demonstrate that a 9-GHz bandwidth RF signal covering 10–19 GHz is divided into 18 sub-channels with a sub-bandwidth of 500 MHz. The image rejection ratio of the sub-channels is about 23 dB, and the spurious-free dynamic range (SFDR) of the receiver can reach 98 dB·Hz2/3. Full article
(This article belongs to the Special Issue Microwave Photonic Techniques)
Show Figures

Figure 1

13 pages, 4215 KB  
Article
Image-Rejected Multi-Band Frequency Down-Conversion Based on Photonic Sampling
by Liuzhu Xu, Di Peng, Yuwen Qin, Jianping Li, Meng Xiang, Ou Xu and Songnian Fu
Photonics 2023, 10(1), 35; https://doi.org/10.3390/photonics10010035 - 29 Dec 2022
Viewed by 2493
Abstract
An image-rejected multi-band frequency down-conversion scheme is proposed and experimentally demonstrated based on photonic sampling. The multi-band radio-frequency (RF) signals to be processed are copied into two replicas in quadrature, which are then sampled by an ultra-short optical pulse train via a polarization-multiplexed [...] Read more.
An image-rejected multi-band frequency down-conversion scheme is proposed and experimentally demonstrated based on photonic sampling. The multi-band radio-frequency (RF) signals to be processed are copied into two replicas in quadrature, which are then sampled by an ultra-short optical pulse train via a polarization-multiplexed modulator. After polarization demultiplexing and detection using a pair of low-speed photodetectors, the multi-band RF signals are simultaneously down-converted to the intermediate frequency (IF) band. The image components can be suppressed by quadrature coupling the two generated IF signals via an electrical 90° hybrid coupler (HC). In the experiment, multi-band RF signals in the frequency range of 6 GHz to 39 GHz are down-converted to the IF band below 4 GHz using a local oscillator (LO) signal at 8 GHz to generate the ultra-short optical pulse train. Image rejection is achieved in the digital domain using digital signal processing to compensate for the amplitude and phase mismatch between the two IF signals and to implement quadrature coupling. In addition, through using an electrical phase shifter, an electrical attenuator, and an electrical 90° HC to achieve quadrature coupling of the two IF signals, image-rejected multi-band frequency down-conversion is also verified in the analog domain. Full article
(This article belongs to the Special Issue Microwave Photonic Techniques)
Show Figures

Figure 1

11 pages, 3288 KB  
Article
Photonic Integrated Frequency Shifter Based on Double Side Band Modulation: Performance Analysis
by Andrés Betancur-Pérez, Cristina de Dios and Pablo Acedo
Photonics 2022, 9(11), 793; https://doi.org/10.3390/photonics9110793 - 25 Oct 2022
Viewed by 3148
Abstract
In this research, we present an analysis of a photonic integrated frequency shifter as a stage for a THz dual comb generator. We studied the performance of the PIC by simulating it with standard building blocks, and aimed toward an improvement of the [...] Read more.
In this research, we present an analysis of a photonic integrated frequency shifter as a stage for a THz dual comb generator. We studied the performance of the PIC by simulating it with standard building blocks, and aimed toward an improvement of the output signal quality. We revised two approaches of the PIC by simulating two modes of generating a double side band modulation suppressed carrier (DSB-SC) with a Mach Zehnder modulator structure (MZM). One approach was using a single Electro-Optic Phase Modulator (EOPM) on an MZM structure (SE-MZM), and the other one was using Double EOPM (DE-MZM). We found a cleaner spectrum with the DE-MZM, since this structure is usually applied to reduce the chirp effect in optical communication systems. We obtained 23 dB of side mode suppression ratio SMSR with one filter, and 44 dB of SMSR with a two-stage filter. In the case of DE-MZM, we obtained a clean tone on intermediate frequency (IF) free of spurious sidebands and comb in IF frequency with 10 dB more power compared to SE-MZM. Full article
(This article belongs to the Special Issue Recent Advances in THz and Microwave Photonics)
Show Figures

Figure 1

13 pages, 1976 KB  
Article
Performance Analysis of a Multi-Function Mach-Zehnder Interferometer Based Photonic Architecture on SOI Acting as a Frequency Shifter
by Gazi Mahamud Hasan, Mehedi Hasan and Trevor J. Hall
Photonics 2021, 8(12), 561; https://doi.org/10.3390/photonics8120561 - 9 Dec 2021
Cited by 2 | Viewed by 4806
Abstract
A photonic frequency shifter based on generalized Mach-Zehnder interferometer (GMZI) architecture is presented and experimentally validated. The circuit consists of four Mach-Zehnder modulators (MZM) in a 4 × 4 network bounded by two 4 × 4 multimode interference couplers and functionally equivalent to [...] Read more.
A photonic frequency shifter based on generalized Mach-Zehnder interferometer (GMZI) architecture is presented and experimentally validated. The circuit consists of four Mach-Zehnder modulators (MZM) in a 4 × 4 network bounded by two 4 × 4 multimode interference couplers and functionally equivalent to two parallel dual-parallel MZM (DP-MZM). The circuit can offer static bias free operation, virtual connectivity control of the components, and spatial separation of up- and down-converted carriers, which can be collected from separate ports without using any optical demultiplexing filters. Thus, the design permits remote heterodyning (advantages which cannot be obtained using a commercial DP-MZM or filter based optical frequency shifter). Experimental investigation shows deviation from ideal performance due to possible fabrication error and poor fiber-chip coupling. A carrier suppression of >20 dB and spurious sideband suppression >12 dB relative to the principal harmonics is achieved without any tuning for bias adjustment. In addition to the frequency conversion, the integration feasible circuit can also perform as a sub-carrier generator, IQ modulator, and frequency multiplier. Full article
Show Figures

Figure 1

14 pages, 5227 KB  
Article
Design of a Multipurpose Photonic Chip Architecture for THz Dual-Comb Spectrometers
by Andrés Betancur-Pérez, Pedro Martín-Mateos, Cristina de Dios and Pablo Acedo
Sensors 2020, 20(21), 6089; https://doi.org/10.3390/s20216089 - 27 Oct 2020
Cited by 4 | Viewed by 2787
Abstract
In this work, we present a multipurpose photonic integrated circuit capable of generating multiheterodyne complex Dual-Combs (DC) THz signals. Our work focuses on translating the functionality of an electro-optic tunable DC system into a photonic chip employing standard building blocks to ensure the [...] Read more.
In this work, we present a multipurpose photonic integrated circuit capable of generating multiheterodyne complex Dual-Combs (DC) THz signals. Our work focuses on translating the functionality of an electro-optic tunable DC system into a photonic chip employing standard building blocks to ensure the scalability and cost efficiency of the integrated device. The architecture we analyze for integration is based on three stages: a seed comb, a mode selection stage and a DC stage. This final DC stage includes a frequency shifter, a key element to improve the final detection of the THz signals and obtain real-time operation. This investigation covers three key aspects: (1) a solution for comb line selection on GHz spaced combs using OIL or OPLL on photonic chips is studied and evaluated, (2) a simple and versatile scheme to produce a frequency shift using the double sideband suppressed carrier modulation technique and an asymmetric Mach Zehnder Interferometer to filter one of the sidebands is proposed, and (3) a multipurpose architecture that can offer a versatile effective device, moving from application-specific PICs to general-purpose PICs. Using the building blocks (BBs) available from an InP-based foundry, we obtained simulations that offer a high-quality Dual-Comb frequency shifted signal with a side mode suppression ratio around 21 dB, and 41 dB after photodetection with an intermediate frequency of 1 MHz. We tested our system to generate a Dual-Comb with 10 kHz of frequency spacing and an OOK modulation with 5 Gbps which can be down-converted to the THz range by a square law detector. It is also important to note that the presented architecture is multipurpose and can also be applied to THz communications. This design is a step to enable a commercial THz photonic chip for multiple applications such as THz spectroscopy, THz multispectral imaging and THz telecommunications and offers the possibility of being fabricated in a multi-project wafer. Full article
(This article belongs to the Special Issue Terahertz Sensing and Imaging Technologies)
Show Figures

Figure 1

19 pages, 4077 KB  
Review
Microwave Photonic Devices Based on Liquid Crystal on Silicon Technology
by Ruiqi Zheng, Erwin H. W. Chan, Xudong Wang, Xinhuan Feng and Bai-Ou Guan
Appl. Sci. 2019, 9(2), 260; https://doi.org/10.3390/app9020260 - 12 Jan 2019
Cited by 13 | Viewed by 4202
Abstract
This paper reviews the recent developments in microwave photonic devices based on liquid crystal on silicon (LCOS) technology. The operation principle, functions and important specifications of an LCOS based optical processor are described. Three microwave photonic devices, which are microwave photonic notch filters, [...] Read more.
This paper reviews the recent developments in microwave photonic devices based on liquid crystal on silicon (LCOS) technology. The operation principle, functions and important specifications of an LCOS based optical processor are described. Three microwave photonic devices, which are microwave photonic notch filters, phase shifters and couplers, reported in the past five years are focused on in this paper. In addition, a new multi-function signal processing structure based on amplitude and phase control functions in conjunction with a power splitting function in a commercial LCOS based optical processor is presented. It has the ability to realize multiple time -shifting operations and multiple frequency-independent phase shifting operations at the same time and control multiple RF signal amplitudes, in a single unit. The results for the new multi-function microwave photonic signal processor demonstrate multiple tunable true time delay and phase shifting operations with less than 3 dB amplitude variation over a very wide frequency range of 10 to 40 GHz. Full article
(This article belongs to the Special Issue Microwave Photonics 2018)
Show Figures

Figure 1

10 pages, 1923 KB  
Article
Ripple Suppression in Broadband Microwave Photonic Phase Shifter Frequency Response
by Weicheng Xia, Ruiqi Zheng, Bijuan Chen, Erwin H. W. Chan, Xudong Wang, Xinhuan Feng and Bai-Ou Guan
Appl. Sci. 2018, 8(12), 2433; https://doi.org/10.3390/app8122433 - 30 Nov 2018
Cited by 1 | Viewed by 2841
Abstract
This paper presents a detailed investigation on the cause of ripples in the frequency response of a microwave photonic phase shifter implemented using a 90° hybrid coupler. It was found that an unwanted radio frequency (RF) modulation sideband is generated at the modulator [...] Read more.
This paper presents a detailed investigation on the cause of ripples in the frequency response of a microwave photonic phase shifter implemented using a 90° hybrid coupler. It was found that an unwanted radio frequency (RF) modulation sideband is generated at the modulator output due to the 90° hybrid coupler amplitude and phase imbalance. This resulted in phase shifter output RF signal amplitude variation and phase deviation. Experimental results demonstrated that incorporating an optical filter in the phase shifter structure can reduce the amplitude variation and phase deviation from 4.2 dB to 2.2 dB and from ±12° to ±3.8°, respectively, over a wide frequency range. A comparison of the loss and the dynamic range of the microwave photonic phase shifter implemented using a 90° hybrid coupler with a conventional fiber optic link is also presented. Full article
(This article belongs to the Special Issue Microwave Photonics 2018)
Show Figures

Figure 1

11 pages, 4079 KB  
Article
Wide Spectral Characteristics of Si Photonic Crystal Mach-Zehnder Modulator Fabricated by Complementary Metal-Oxide-Semiconductor Process
by Yosuke Hinakura, Yosuke Terada, Takuya Tamura and Toshihiko Baba
Photonics 2016, 3(2), 17; https://doi.org/10.3390/photonics3020017 - 2 Apr 2016
Cited by 30 | Viewed by 7353
Abstract
Optical modulators for optical interconnects require a small size, small voltage, high speed and wide working spectrum. For this purpose, we developed Si slow-light Mach-Zehnder modulators via a 180 nm complementary metal-oxide-semiconductor process. We employed 200 μm lattice-shifted photonic crystal waveguides with interleaved [...] Read more.
Optical modulators for optical interconnects require a small size, small voltage, high speed and wide working spectrum. For this purpose, we developed Si slow-light Mach-Zehnder modulators via a 180 nm complementary metal-oxide-semiconductor process. We employed 200 μm lattice-shifted photonic crystal waveguides with interleaved p-n junctions as phase shifters. The group index spectrum of slow light was almost flat at ng ≈ 20 but exhibited ±10% fluctuation over a wavelength bandwidth of 20 nm. The cutoff frequency measured in this bandwidth ranged from 15 to 20 GHz; thus, clear open eyes were observed in the 25 Gbps modulation. However, the fluctuation in ng was reflected in the extinction ratio and bit-error rate. For a stable error-free operation, a 1 dB margin is necessary in the extinction ratio. In addition, we constructed a device with varied values of ng and confirmed that the extinction ratio at this speed was enhanced by larger ng up to 60. However, this larger ng reduced the cutoff frequency because of increased phase mismatch between slow light and radio frequency signals. Therefore, ng available for 25 Gbps modulation is limited to up to 40 for the current device design. Full article
(This article belongs to the Special Issue 3D- and 2D-Nanofabrication for Photonic Devices)
Show Figures

Graphical abstract

Back to TopTop