Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = photomagnetic properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 10898 KB  
Review
Molecular Nanomagnets with Photomagnetic Properties: Design Strategies and Recent Advances
by Xiaoshuang Gou, Xinyu Sun, Peng Cheng and Wei Shi
Magnetochemistry 2025, 11(9), 77; https://doi.org/10.3390/magnetochemistry11090077 - 31 Aug 2025
Cited by 1 | Viewed by 1324
Abstract
The magnetic properties of molecular nanomagnets can be finely modulated by light, which provides great potential in optical switches, smart sensors, and data storage devices. Light-induced spin transition, structure changes, and radical formation could tune the static and dynamic magnetic properties of molecular [...] Read more.
The magnetic properties of molecular nanomagnets can be finely modulated by light, which provides great potential in optical switches, smart sensors, and data storage devices. Light-induced spin transition, structure changes, and radical formation could tune the static and dynamic magnetic properties of molecular nanomagnets with high spatial and temporal resolutions. Herein, we summarize the design strategies of photoresponsive molecular nanomagnets and review the recent advances in transition metal/lanthanide molecular nanomagnets with photomagnetic properties. The photoresponsive mechanism based on spin transition, photocyclization, and photogenerated radicals is discussed in detail, providing insights into the photomagnetic properties of molecular nanomagnets for advanced photoresponsive materials. Full article
Show Figures

Figure 1

12 pages, 3248 KB  
Article
Collective Magnetic Behavior of 11 nm Photo-Switchable CsCoFe Prussian Blue Analogue Nanocrystals: Effect of Dilution and Light Intensity
by Linh Trinh, Eric Rivière, Sandra Mazerat, Laure Catala and Talal Mallah
Magnetochemistry 2021, 7(7), 99; https://doi.org/10.3390/magnetochemistry7070099 - 8 Jul 2021
Cited by 4 | Viewed by 2603
Abstract
The collective magnetic behavior of photoswitchable 11 nm cyanide-bridged nanoparticles based of the Prussian blue analogue CsCoFe were investigated when embedded in two different matrices with different concentrations. The effect of the intensity of light irradiation was studied in the less concentrated sample. [...] Read more.
The collective magnetic behavior of photoswitchable 11 nm cyanide-bridged nanoparticles based of the Prussian blue analogue CsCoFe were investigated when embedded in two different matrices with different concentrations. The effect of the intensity of light irradiation was studied in the less concentrated sample. Magnetization studies and alternating magnetic susceptibility data are consistent with a collective magnetic behavior due to interparticle dipolar magnetic interaction for the two compounds, even though the objects have a size that place them in the superparamagnetic regime. Full article
Show Figures

Figure 1

13 pages, 2138 KB  
Article
New Photomagnetic Ionic Salts Based on [MoIV(CN)8]4− and [WIV(CN)8]4− Anions
by Xinghui Qi, Philippe Guionneau, Enzo Lafon, Solène Perot, Brice Kauffmann and Corine Mathonière
Magnetochemistry 2021, 7(7), 97; https://doi.org/10.3390/magnetochemistry7070097 - 6 Jul 2021
Cited by 10 | Viewed by 3678
Abstract
Three new ionic salts containing [M(CN)8]4− (M = MoIV and WIV) were prepared using large complex cations based on a non-conventional motif built with the tris(2-aminoethyl)amine (noted hereafter tren) ligand, [{M’(tren)}3(μ-tren)]6+ (M’ = Cu [...] Read more.
Three new ionic salts containing [M(CN)8]4− (M = MoIV and WIV) were prepared using large complex cations based on a non-conventional motif built with the tris(2-aminoethyl)amine (noted hereafter tren) ligand, [{M’(tren)}3(μ-tren)]6+ (M’ = CuII and ZnII). The crystal structures of the three compounds show that the atomic arrangement is formed by relatively isolated anionic and cationic entities. The three compounds were irradiated with a blue light at low temperature, and show a significant photomagnetic effect. The remarkable properties of these compounds are (i) the long-lived photomagnetic metastable states for the [Mo(CN)8]4−-based compounds well above 200 K and (ii) the rare efficient photomagnetic properties of the [W(CN)8]4−-based compound. These photomagnetic properties are compared with the singlet-triplet conversion recently reported for the K4[Mo(CN)8]·2H2O compound. Full article
Show Figures

Graphical abstract

13 pages, 3843 KB  
Article
Synthesis, Structure, and Photomagnetic Properties of a Hydrogen-Bonded Lattice of [Fe(bpp)2]2+ Spin-Crossover Complexes and Nicotinate Anions
by Verónica Jornet-Mollá, Carlos Giménez-Saiz and Francisco M. Romero
Crystals 2018, 8(11), 439; https://doi.org/10.3390/cryst8110439 - 21 Nov 2018
Cited by 16 | Viewed by 4965
Abstract
In this paper, we report on the synthesis, crystal structure, and photomagnetic properties of the spin-crossover salt of formula [Fe(bpp)2](C6H4NO2)2·4H2O (1·4H2O) (bpp = 2,6-bis(pyrazol-3-yl)pyridine; C6H [...] Read more.
In this paper, we report on the synthesis, crystal structure, and photomagnetic properties of the spin-crossover salt of formula [Fe(bpp)2](C6H4NO2)2·4H2O (1·4H2O) (bpp = 2,6-bis(pyrazol-3-yl)pyridine; C6H4NO2 = nicotinate anion). This compound exhibits a 3D supramolecular architecture built from hydrogen bonds between iron(II) complexes, nicotinate anions, and water molecules. As synthesized, the hydrated material is low-spin and desolvation triggers a low-spin (LS) to high-spin (HS) transformation. Anhydrous phase 1 undergoes a partial spin crossover (T1/2= 281 K) and a LS to HS photomagnetic conversion with a T(LIESST) value of 56 K. Full article
(This article belongs to the Special Issue Synthesis and Applications of New Spin Crossover Compounds)
Show Figures

Graphical abstract

17 pages, 1764 KB  
Article
Effects of Internal and External Pressure on the [Fe(PM-PEA)2(NCS)2] Spin-Crossover Compound (with PM-PEA = N-(2′-pyridylmethylene)-4-(phenylethynyl)aniline)
by Nicolas Paradis, Frédéric Le Gac, Philippe Guionneau, Alain Largeteau, Dmitry S. Yufit, Patrick Rosa, Jean-François Létard and Guillaume Chastanet
Magnetochemistry 2016, 2(1), 15; https://doi.org/10.3390/magnetochemistry2010015 - 4 Mar 2016
Cited by 17 | Viewed by 5649
Abstract
The spin-crossover properties of the strongly cooperative compound [Fe(PM-PEA)2(NCS)2] (with PM-PEA = N-(2′-pyridylmethylene)-4-(phenylethynyl)aniline) have been investigated under external in situ pressure, external ex situ pressure and internal pressure. In situ single-crystal X-ray diffraction investigations under pressure indicate a [...] Read more.
The spin-crossover properties of the strongly cooperative compound [Fe(PM-PEA)2(NCS)2] (with PM-PEA = N-(2′-pyridylmethylene)-4-(phenylethynyl)aniline) have been investigated under external in situ pressure, external ex situ pressure and internal pressure. In situ single-crystal X-ray diffraction investigations under pressure indicate a Spin-Crossover (SCO) at about 400 MPa and room temperature. Interestingly, application of ex situ pressure induces the irreversible enlargement of the hysteresis width, almost independently from the pressure value. Elsewhere, the internal pressure effects are examined through the magnetic and photomagnetic investigations on powders of the solid-solutions based on the Mn ion, [FexMn1−x(PM-PEA)2(NCS)2]. Growing the Mn ratio increases the internal pressure, allowing to control the hysteresis width and the paramagnetic residue but also to enhance the efficiency of the photo-induced SCO. The comparison of the quenching and light-induced behaviors reveals a complex phase-diagram governed by internal pressure, temperature and light. Full article
(This article belongs to the Special Issue Spin Crossover (SCO) Research)
Show Figures

Graphical abstract

Back to TopTop