Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = photo-magnetic actuation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 2583 KiB  
Review
A Review of Soft Robotic Actuators and Their Applications in Bioengineering, with an Emphasis on HASEL Actuators’ Future Potential
by Osura Perera, Ranjith Liyanapathirana, Gaetano Gargiulo and Upul Gunawardana
Actuators 2024, 13(12), 524; https://doi.org/10.3390/act13120524 - 18 Dec 2024
Cited by 5 | Viewed by 5834
Abstract
This review will examine the rapidly growing field of soft robotics, with a special emphasis on soft robotic actuators and their applications in bioengineering. Bioengineering has increasingly utilized soft robotics due to their mechanical adaptability and flexibility, with applications including drug delivery, assistive [...] Read more.
This review will examine the rapidly growing field of soft robotics, with a special emphasis on soft robotic actuators and their applications in bioengineering. Bioengineering has increasingly utilized soft robotics due to their mechanical adaptability and flexibility, with applications including drug delivery, assistive and wearable devices, artificial organs, and prosthetics. Soft robotic applications, as well as the responsive mechanisms employed in soft robotics, include electrical, magnetic, thermal, photo-responsive, and pressure-driven actuators. Special attention is given to hydraulically amplified self-healing electrostatic (HASEL) actuators due to their biomimetic properties and innovative combination of dielectric elastomer actuators (DEAs) and hydraulic actuators, which eliminates the limitations of each actuator while introducing capabilities such as self-healing. HASEL actuators combine the fast response and self-sensing features of DEAs, as well as the force generation and adaptability of hydraulic systems. Their self-healing ability from electrical damage not only makes HASELs a unique technology among others but also makes them promising for long-term bioengineering applications. A key contribution of this study is the comparative analysis of the soft actuators, presented in detailed tables. The performance of soft actuators is assessed against a common set of critical parameters, including specific power, strain, maximum actuation stress, energy efficiency, cycle life, and self-healing capabilities. This study has also identified some important research gaps and potential areas where soft robotics may still be developed in the future. Future research should focus on improvements in power supply design, long-term material durability, and enhanced energy efficiency. This review will serve as an intermediate reference for researchers and system designers, guiding the next generation of advancements in soft robotics within bioengineering. Full article
(This article belongs to the Special Issue Soft Robotics in Biomedical Application)
Show Figures

Figure 1

26 pages, 5185 KiB  
Review
Bioinspired Stimuli-Responsive Materials for Soft Actuators
by Zhongbao Wang, Yixin Chen, Yuan Ma and Jing Wang
Biomimetics 2024, 9(3), 128; https://doi.org/10.3390/biomimetics9030128 - 21 Feb 2024
Cited by 13 | Viewed by 6772
Abstract
Biological species can walk, swim, fly, jump, and climb with fast response speeds and motion complexity. These remarkable functions are accomplished by means of soft actuation organisms, which are commonly composed of muscle tissue systems. To achieve the creation of their biomimetic artificial [...] Read more.
Biological species can walk, swim, fly, jump, and climb with fast response speeds and motion complexity. These remarkable functions are accomplished by means of soft actuation organisms, which are commonly composed of muscle tissue systems. To achieve the creation of their biomimetic artificial counterparts, various biomimetic stimuli-responsive materials have been synthesized and developed in recent decades. They can respond to various external stimuli in the form of structural or morphological transformations by actively or passively converting input energy into mechanical energy. They are the core element of soft actuators for typical smart devices like soft robots, artificial muscles, intelligent sensors and nanogenerators. Significant progress has been made in the development of bioinspired stimuli-responsive materials. However, these materials have not been comprehensively summarized with specific actuation mechanisms in the literature. In this review, we will discuss recent advances in biomimetic stimuli-responsive materials that are instrumental for soft actuators. Firstly, different stimuli-responsive principles for soft actuators are discussed, including fluidic, electrical, thermal, magnetic, light, and chemical stimuli. We further summarize the state-of-the-art stimuli-responsive materials for soft actuators and explore the advantages and disadvantages of using electroactive polymers, magnetic soft composites, photo-thermal responsive polymers, shape memory alloys and other responsive soft materials. Finally, we provide a critical outlook on the field of stimuli-responsive soft actuators and emphasize the challenges in the process of their implementation to various industries. Full article
(This article belongs to the Special Issue Bioinspired Interfacial Materials)
Show Figures

Graphical abstract

20 pages, 4589 KiB  
Article
A Printable Magnetic-Responsive Iron Oxide Nanoparticle (ION)-Gelatin Methacryloyl (GelMA) Ink for Soft Bioactuator/Robot Applications
by Han-Wen Yang, Nien-Tzu Yeh, Tzu-Ching Chen, Yu-Chun Yeh, I-Chi Lee and Yi-Chen Ethan Li
Polymers 2024, 16(1), 25; https://doi.org/10.3390/polym16010025 - 20 Dec 2023
Cited by 3 | Viewed by 2295
Abstract
The features or actuation behaviors of nature’s creatures provide concepts for the development of biomimetic soft bioactuators/robots with stimuli-responsive capabilities, design convenience, and environmental adaptivity in various fields. Mimosa pudica is a mechanically responsive plant that can convert pressure to the motion of [...] Read more.
The features or actuation behaviors of nature’s creatures provide concepts for the development of biomimetic soft bioactuators/robots with stimuli-responsive capabilities, design convenience, and environmental adaptivity in various fields. Mimosa pudica is a mechanically responsive plant that can convert pressure to the motion of leaves. When the leaves receive pressure, the occurrence of asymmetric turgor in the extensor and flexor sides of the pulvinus from redistributing the water in the pulvinus causes the bending of the pulvinus. Inspired by the actuation of Mimosa pudica, designing soft bioactuators can convert external stimulations to driving forces for the actuation of constructs which has been receiving increased attention and has potential applications in many fields. 4D printing technology has emerged as a new strategy for creating versatile soft bioactuators/robots by integrating printing technologies with stimuli-responsive materials. In this study, we developed a hybrid ink by combining gelatin methacryloyl (GelMA) polymers with iron oxide nanoparticles (IONs). This hybrid ION-GelMA ink exhibits tunable rheology, controllable mechanical properties, magnetic-responsive behaviors, and printability by integrating the internal metal ion-polymeric chain interactions and photo-crosslinking chemistries. This design offers the inks a dual crosslink mechanism combining the advantages of photocrosslinking and ionic crosslinking to rapidly form the construct within 60 s of UV exposure time. In addition, the magnetic-responsive actuation of ION-GelMA constructs can be regulated by different ION concentrations (0–10%). Furthermore, we used the ION-GelMA inks to fabricate a Mimosa pudica-like soft bioactuator through a mold casting method and a direct-ink-writing (DIW) printing technology. Obviously, the pinnule leaf structure of printed constructs presents a continuous reversible shape transformation in an air phase without any liquid as a medium, which can mimic the motion characteristics of natural creatures. At the same time, compared to the model casting process, the DIW printed bioactuators show a more refined and biomimetic transformation shape that closely resembles the movement of the pinnule leaf of Mimosa pudica in response to stimulation. Overall, this study indicates the proof of concept and the potential prospect of magnetic-responsive ION-GelMA inks for the rapid prototyping of biomimetic soft bioactuators/robots with untethered non-contact magneto-actuations. Full article
(This article belongs to the Special Issue Biodegradable Polymers for Controlled Drug Release and Delivery)
Show Figures

Figure 1

15 pages, 5741 KiB  
Article
Fabrication of Bilayer Magnetically Actuated L-Shaped Microrobot Based on Chitosan via Photolithography
by Haoying Wang, Xiaoxia Song, Junfeng Xiong and U Kei Cheang
Polymers 2022, 14(24), 5509; https://doi.org/10.3390/polym14245509 - 15 Dec 2022
Cited by 7 | Viewed by 2642
Abstract
Magnetically actuated microrobots showed increasing potential in various fields, especially in the biomedical area, such as invasive surgery, targeted cargo delivery, and treatment. However, it remains a challenge to incorporate biocompatible natural polymers that are favorable for practical biomedical applications. In this work, [...] Read more.
Magnetically actuated microrobots showed increasing potential in various fields, especially in the biomedical area, such as invasive surgery, targeted cargo delivery, and treatment. However, it remains a challenge to incorporate biocompatible natural polymers that are favorable for practical biomedical applications. In this work, bilayer magnetic microrobots with an achiral planar design were fabricated using a biocompatible natural polymer and Fe3O4 nanoparticles through the photolithography by applying the layer-by-layer method. The microrobots consisted of a magnetic bottom layer and a photo-crosslinked chitosan top layer. The SEM results showed that the microrobot processed the L-shaped planar structure with the average width, length, and thickness of 99.18 ± 5.11 μm, 189.56 ± 11.37 μm, and 23.56 ± 4.08 μm, respectively. Moreover, microrobots actuated using a three-dimensional (3D) Helmholtz coil system was characterized and reached up to an average maximum velocity of 325.30 μm/s and a step-out frequency of 14 Hz. Furthermore, the microrobots exhibited excellent cell biocompatibility towards L929 cells in the CCK-8 assay. Therefore, the development of bi-layered chitosan-based microrobots offers a general solution for using magnetic microrobots in biomedical applications by providing an easy-to-fabricate, highly mobile microrobotic platform with the incorporation of biocompatible natural polymers for enhanced biocompatibility. Full article
(This article belongs to the Special Issue Chitosan-Based Nanocomposite Materials and Their Applications)
Show Figures

Figure 1

17 pages, 3300 KiB  
Article
Photo-Magnetic Irradiation-Mediated Multimodal Therapy of Neuroblastoma Cells Using a Cluster of Multifunctional Nanostructures
by Rohini Atluri, Rahul Atmaramani, Gamage Tharaka, Thomas McCallister, Jian Peng, David Diercks, Somesree GhoshMitra and Santaneel Ghosh
Nanomaterials 2018, 8(10), 774; https://doi.org/10.3390/nano8100774 - 29 Sep 2018
Cited by 9 | Viewed by 4391
Abstract
The use of high intensity chemo-radiotherapies has demonstrated only modest improvement in the treatment of high-risk neuroblastomas. Moreover, undesirable drug specific and radiation therapy-incurred side effects enhance the risk of developing into a second cancer at a later stage. In this study, a [...] Read more.
The use of high intensity chemo-radiotherapies has demonstrated only modest improvement in the treatment of high-risk neuroblastomas. Moreover, undesirable drug specific and radiation therapy-incurred side effects enhance the risk of developing into a second cancer at a later stage. In this study, a safer and alternative multimodal therapeutic strategy involving simultaneous optical and oscillating (AC, Alternating Current) magnetic field stimulation of a multifunctional nanocarrier system has successfully been implemented to guide neuroblastoma cell destruction. This novel technique permitted the use of low-intensity photo-magnetic irradiation and reduced the required nanoparticle dose level. The combination of released cisplatin from the nanodrug reservoirs and photo-magnetic coupled hyperthermia mediated cytotoxicity led to the complete ablation of the B35 neuroblastoma cells in culture. Our study suggests that smart nanostructure-based photo-magnetic hybrid irradiation is a viable approach to remotely guide neuroblastoma cell destruction, which may be adopted in clinical management post modification to treat aggressive cancers. Full article
(This article belongs to the Special Issue Nanocolloids for Nanomedicine and Drug Delivery)
Show Figures

Figure 1

27 pages, 10097 KiB  
Review
Nanostructured Composites Based on Liquid-Crystalline Elastomers
by Vanessa Cresta, Giuseppe Romano, Alexej Kolpak, Boštjan Zalar and Valentina Domenici
Polymers 2018, 10(7), 773; https://doi.org/10.3390/polym10070773 - 14 Jul 2018
Cited by 23 | Viewed by 8259
Abstract
Liquid-crystalline elastomers (LCEs) are the object of many research investigations due to their reversible and controllable shape deformations, and their high potential for use in the field of soft robots and artificial muscles. This review focuses on recent studies about polymer composites based [...] Read more.
Liquid-crystalline elastomers (LCEs) are the object of many research investigations due to their reversible and controllable shape deformations, and their high potential for use in the field of soft robots and artificial muscles. This review focuses on recent studies about polymer composites based on LCEs and nanomaterials having different chemistry and morphology, with the aim of instilling new physical properties into LCEs. The synthesis, physico-chemical characterization, actuation properties, and applications of LCE-based composites reported in the literature are reviewed. Several cases are discussed: (1) the addition of various carbon nanomaterials to LCEs, from carbon black to carbon nanotubes, to the recent attempts to include graphene layers to enhance the thermo-mechanic properties of LCEs; (2) the use of various types of nanoparticles, such as ferroelectric ceramics, gold nanoparticles, conductive molybdenum-oxide nanowires, and magnetic iron-oxide nanoparticles, to induce electro-actuation, magnetic-actuation, or photo-actuation into the LCE-based composites; (3) the deposition on LCE surfaces of thin layers of conductive materials (i.e., conductive polymers and gold nanolayers) to produce bending actuation by applying on/off voltage cycles or surface-wrinkling phenomena in view of tunable optical applications. Some future perspectives of this field of soft materials conclude the review. Full article
(This article belongs to the Special Issue Liquid Crystalline Polymers)
Show Figures

Graphical abstract

71 pages, 3321 KiB  
Review
Fabrications and Applications of Stimulus-Responsive Polymer Films and Patterns on Surfaces: A Review
by Jem-Kun Chen and Chi-Jung Chang
Materials 2014, 7(2), 805-875; https://doi.org/10.3390/ma7020805 - 28 Jan 2014
Cited by 157 | Viewed by 21071
Abstract
In the past two decades, we have witnessed significant progress in developing high performance stimuli-responsive polymeric materials. This review focuses on recent developments in the preparation and application of patterned stimuli-responsive polymers, including thermoresponsive layers, pH/ionic-responsive hydrogels, photo-responsive film, magnetically-responsive composites, electroactive composites, [...] Read more.
In the past two decades, we have witnessed significant progress in developing high performance stimuli-responsive polymeric materials. This review focuses on recent developments in the preparation and application of patterned stimuli-responsive polymers, including thermoresponsive layers, pH/ionic-responsive hydrogels, photo-responsive film, magnetically-responsive composites, electroactive composites, and solvent-responsive composites. Many important new applications for stimuli-responsive polymers lie in the field of nano- and micro-fabrication, where stimuli-responsive polymers are being established as important manipulation tools. Some techniques have been developed to selectively position organic molecules and then to obtain well-defined patterned substrates at the micrometer or submicrometer scale. Methods for patterning of stimuli-responsive hydrogels, including photolithography, electron beam lithography, scanning probe writing, and printing techniques (microcontact printing, ink-jet printing) were surveyed. We also surveyed the applications of nanostructured stimuli-responsive hydrogels, such as biotechnology (biological interfaces and purification of biomacromoles), switchable wettability, sensors (optical sensors, biosensors, chemical sensors), and actuators. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

25 pages, 821 KiB  
Review
Nanoparticle-Liquid Crystalline Elastomer Composites
by Yan Ji, Jean E. Marshall and Eugene M. Terentjev
Polymers 2012, 4(1), 316-340; https://doi.org/10.3390/polym4010316 - 30 Jan 2012
Cited by 78 | Viewed by 13801
Abstract
Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including a uniquely high-stroke reversible mechanical actuation triggered by external stimuli. Fundamentally, all such stimuli affect the degree of liquid crystalline order in the polymer chains cross-linked into an elastic network. Heat [...] Read more.
Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including a uniquely high-stroke reversible mechanical actuation triggered by external stimuli. Fundamentally, all such stimuli affect the degree of liquid crystalline order in the polymer chains cross-linked into an elastic network. Heat and the resulting thermal actuation act by promoting entropic disorder, as does the addition of solvents. Photo-isomerization is another mechanism of actuation, reducing the orientational order by diminishing the fraction of active rod-like mesogenic units, mostly studied for azobenzene derivatives incorporated into the LCE composition. Embedding nanoparticles provides a new, promising strategy to add functionality to LCEs and ultimately enhance their performance as sensors and actuators. The motivation for the combination of nanoparticles with LCEs is to provide better-controlled actuation stimuli, such as electric and magnetic fields, and broad-spectrum light, by selecting and configuring the appropriate nanoparticles in the LCE matrix. Here we give an overview of recent advances in this area with a focus on preparation, physical properties and actuation performance of the resultant nanocomposites. Full article
(This article belongs to the Special Issue Liquid Crystalline Polymers)
Show Figures

Figure 1

Back to TopTop