Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (110)

Search Parameters:
Keywords = petrographic texture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 57582 KiB  
Article
Integrating Remote Sensing and Aeromagnetic Data for Enhanced Geological Mapping at Wadi Sibrit-Urf Abu Hamam District, Southern Part of Nubian Shield
by Hatem M. El-Desoky, Waheed H. Mohamed, Ali Shebl, Wael Fahmy, Anas M. El-Sherif, Ahmed M. Abdel-Rahman, Hamed I. Mira, Mahmoud M. El-Rahmany, Fahad Alshehri, Sattam Almadani and Hamada El-Awny
Minerals 2025, 15(6), 657; https://doi.org/10.3390/min15060657 - 18 Jun 2025
Viewed by 387
Abstract
The present study aims to characterize complex geological structures and significant mineralization using remote sensing and aeromagnetic studies. Structural lineaments play a crucial role in the localization and concentration of mineral deposits. For the first time over the study district, a combination of [...] Read more.
The present study aims to characterize complex geological structures and significant mineralization using remote sensing and aeromagnetic studies. Structural lineaments play a crucial role in the localization and concentration of mineral deposits. For the first time over the study district, a combination of aeromagnetic data, Landsat 9, ASTER, and PRISMA hyperspectral data was utilized to enhance the characterization of both lithological units and structural features. Advanced image processing techniques, including false color composites, principal component analysis (PCA), independent component analysis (ICA), and SMACC, were applied to the remote sensing datasets. These methods enabled effective discrimination between Phanerozoic rock formations and the complex basement units, which comprise the island arc assemblage, Dokhan volcanics, and late-orogenic granites. The local and deep magnetic sources were separated using Gaussian filters. The Neoproterozoic basement rocks were estimated using the radial average power spectrum technique and the Euler deconvolution technique (ED). According to the RAPS technique, the average depths to shallow and deep magnetic sources are approximately 0.4 km and 1.6 km, respectively. The obtained ED contacts range in depth from 0.081 to 1.5 km. The research area revealed massive structural lineaments, particularly in the northeast and northwest sides, where a dense concentration of these lineaments was identified. The locations with the highest densities are thought to signify more fracturization in the rocks that are thought to be connected to mineralization. According to the automatic lineament extraction methods and rose diagram, NW-SE, NNE-SSW, and N-S are the major structural directions. These trends were confirmed and visually represented through textural analysis and drainage pattern control. The lithological mapping results were validated through field observations and petrographic analysis. This integrated approach has proven highly effective, showcasing significant potential for both detailed structural analysis and accurate lithological discrimination, which may be related to further mineralization exploration. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

19 pages, 5499 KiB  
Article
High-Frequency Oolitic Tidal Cycles and Their Geochemical Signatures in the Upper Ediacaran Qigebulake Formation, NW Tarim Basin (China)
by Yan Hao and Shaonan Zhang
Minerals 2025, 15(6), 613; https://doi.org/10.3390/min15060613 - 6 Jun 2025
Viewed by 360
Abstract
The Qigebulake Formation in the northwestern Tarim Basin records high-frequency oolitic tidal flat cycles formed during the Upper Ediacaran, a period marked by tectonic, volcanic, and hydrothermal events. This study presents a detailed petrographic and geochemical characterization of these cycles, focusing on their [...] Read more.
The Qigebulake Formation in the northwestern Tarim Basin records high-frequency oolitic tidal flat cycles formed during the Upper Ediacaran, a period marked by tectonic, volcanic, and hydrothermal events. This study presents a detailed petrographic and geochemical characterization of these cycles, focusing on their lithofacies development and implications for regional geological processes. Seven microfacies were identified, ranging from oolitic dolostone and dolothrombolite to siliciclastic dolomudstone and mudstone. Elemental trends indicate a systematic decline in SiO2, Al2O3, and TiO2 content with decreasing siliciclastic input, suggesting a shallowing-upward sequence. Volcaniclastic quartz grains, exhibiting embayed textures and bright-blue cathodoluminescence, are reported here for the first time in the Ediacaran of Tarim, supporting synsedimentary volcanic input. Positive δEu anomalies, coupled with low Al/(Al+Fe+Mn) and elevated Fe2O3/TiO2 and MnO/TiO2 ratios, reveal hydrothermal influence in upper-cycle dolostones. These signatures, combined with regional stratigraphy, suggest that the Qigebulake tidal flat records the interplay between deposition, volcanism, and fluid migration during the late Ediacaran. The findings provide new constraints on the evolution of peritidal environments and inform deep carbonate reservoir assessments in Tarim and similar cratonic basins. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

30 pages, 7259 KiB  
Article
Hornblende and Plagioclase Micro-Texture and Compositions: Evidence for Magma Mixing in High-Mg Adakitic Pluton, North China Craton
by Xiaowei Guo and Nengsong Chen
Minerals 2025, 15(6), 604; https://doi.org/10.3390/min15060604 - 4 Jun 2025
Viewed by 419
Abstract
In this study, we performed microtextural, major/minor element, and Sr-isotope analyses on hornblende and plagioclase (as phenocrysts, groundmass, or inclusions) from the Early Cretaceous Jiagou pluton (eastern North China Craton), to elucidate the magma source, possible magma mixing process, and the transition from [...] Read more.
In this study, we performed microtextural, major/minor element, and Sr-isotope analyses on hornblende and plagioclase (as phenocrysts, groundmass, or inclusions) from the Early Cretaceous Jiagou pluton (eastern North China Craton), to elucidate the magma source, possible magma mixing process, and the transition from low-Mg to high-Mg adakitic magmas. Petrographic study and electron microprobe (EMP) analyses reveal well-defined compositional zoning in hornblende and plagioclase phenocrysts. Outward from the core (first zone), the second and third zones show pronounced oscillatory zoning and significant variations in Mg# and An%, while the fourth zone is relatively homogeneous. A corroded albitic plagioclase core with sieve texture is enclosed in the first zone and locally intergrows with worm-like quartz streaks and fine hornblende inclusions, featuring Mg# = 81 (core) and 62 (rim). The new plagioclase infill has An% = 14–41. The corroded plagioclase has an initial 87Sr/86Sr = 0.7074, while that of zoned phenocrystic plagioclase ranges from 0.7068 to 0.7079, suggesting EMI and EMII mantle input. Inclusion hornblende is low in Ti and Cr, while phenocrystic hornblende shows higher Cr in the first zone and lower Cr in the outer zones. The newly discovered mafic microgranular enclaves (MMEs) and regional geochemical data suggest three major magma mixing events. The felsic parental magma was likely originated from a mixed EMI–EMII mantle source before mixing with a mafic magma derived from the partial melting of, successively, a low-Cr and a high-Cr peridotite. Our findings support a petrogenetic model of lower crustal delamination and highlight the critical role of repeated mafic injections in generating high-Mg adakitic magmas. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

23 pages, 38314 KiB  
Article
Multi-Analytical Characterization of Serpentinite Rocks Employed as Stone Material: An Example from Andalusia (Southern Spain), Basilicata, and Calabria (Southern Italy)
by Roberto Visalli, Rafael Navarro, Roberto Buccione, Valeria Indelicato, Giovanna Rizzo, Rosolino Cirrincione and Rosalda Punturo
Minerals 2025, 15(5), 522; https://doi.org/10.3390/min15050522 - 14 May 2025
Viewed by 632
Abstract
Serpentinites are metamorphic rocks constituted primarily by serpentine-group minerals (antigorite, chrysotile, lizardite) resulting from the transformation and low-temperature hydration of previous olivine-rich ultramafic rocks, such as dunite, lherzolite, wehrlite, and harzburgite. The peculiar features of the serpentinites such as the greenish color and [...] Read more.
Serpentinites are metamorphic rocks constituted primarily by serpentine-group minerals (antigorite, chrysotile, lizardite) resulting from the transformation and low-temperature hydration of previous olivine-rich ultramafic rocks, such as dunite, lherzolite, wehrlite, and harzburgite. The peculiar features of the serpentinites such as the greenish color and the intricate vein and mesh-like texture, as well as their role in CO2 sequestration when carbonated, have hugely increased interest in studying these rocks over recent decades. Moreover, since antiquity, serpentinites have long been exploited, traded, and exported worldwide as daily tools, as well as in buildings and decorative stones in both internal and external architectural elements, because of their aesthetic appeal, attractiveness, and durability. In this work, we analyzed and compared petrographic features, geochemical signatures, and physical–mechanical properties of serpentinites from historical quarries from Andalusia (southern Spain), Basilicata, and Calabria (southern Italy) where they have been used as dimension stones in religious and civil buildings and as construction materials. We aim to evaluate and assess differences in petrographic, carbonation, uniaxial compressive strength, and seismic behavior, that could affect the efficiency when these serpentinites are used as either building and construction materials or for preservation/renovation purposes in cultural heritage. Results obtained from petrophysical investigations of serpentinites from these regions highlight that these materials are suitable for use in construction to various extents and are considered a valuable georesource, behind a detailed characterization carried out before their implementation in construction or conservation/restoration of architectural heritage. Full article
(This article belongs to the Special Issue Mineralogy, Chemistry, Weathering and Application of Serpentinite)
Show Figures

Figure 1

22 pages, 13090 KiB  
Article
Petrological, Textural, Compositional, and Economic Potential of Carbonatites from the Peshawar Plain Alkaline Igneous Province, Northwestern Himalaya
by Mehboob ur Rashid and Hafiz U. Rehman
Minerals 2025, 15(5), 439; https://doi.org/10.3390/min15050439 - 23 Apr 2025
Viewed by 486
Abstract
Carbonatites, which are rare mantle-derived igneous rocks that are mainly enriched in carbonate minerals and host relatively higher amounts of rare earth element (REE)-bearing phases, remain subjects of extensive geological research due to their enigmatic origin and potential economic importance. This study aims [...] Read more.
Carbonatites, which are rare mantle-derived igneous rocks that are mainly enriched in carbonate minerals and host relatively higher amounts of rare earth element (REE)-bearing phases, remain subjects of extensive geological research due to their enigmatic origin and potential economic importance. This study aims to describe the petrographic, mineralogical, and some rare-earth element (REE) abundances of four carbonatite bodies (known as Sillai Patti, Loe Shilman, Warsak, and Jambil) exposed in the Peshawar Plain Alkaline Igneous Province (PPAIP), northwestern Himalaya, Pakistan, to identify their economic potential. The observed petrographic, textural features, and chemical compositions of the constituent minerals of the carbonatites were utilized to elucidate the evolutionary processes through which the rocks evolved. The results indicate distinct mineralogical assemblages dominated by calcite, dolomite, apatite, pyroxene, biotite, and feldspar, with accessory opaque and REE-bearing phases, such as pyrochlore, monazite, and britholite. The apatite grains display compositional zoning reflecting their growth under magmatic conditions. The petrographic features of apatite in some carbonatite samples, exhibiting preferred orientation in a particular direction and spongy or murky textures, indicate that the studied rocks underwent post-magmatic deformation or hydrothermal alteration. Calcite and dolomite, coexisting in some carbonatite samples, exhibit significant Mg-Fe variation, which is possibly related to magmatic differentiation. The pyroxene compositions vary from a low-calcium enstatite–ferrosilite series to high-calcium diopside, suggesting variable crystallization environments among the carbonatite bodies studied. The abundance of REE-bearing phases in the studied carbonatites emphasizes their high economic potential. These findings indicate that the PPAIP carbonatites originated from mantle-derived magmas and subsequently experienced metamorphic/metasomatic overprinting during their tectonic evolution. The abundance of REE-rich phases such as apatite, pyrochlore, monazite, and britholite underscores their high economic potential. Full article
(This article belongs to the Special Issue Geochemistry and Geochronology of High-Grade Metamorphic Rocks)
Show Figures

Graphical abstract

12 pages, 2765 KiB  
Article
Comparative Analysis of Microscopic Pore Throat Heterogeneity in the Chang 6 Tight Sandstone Reservoir: Implications for Production Dynamics and Development Strategies in the Wuqi-Dingbian Region, Ordos Basin
by Jun Li, Mingwei Wang, Yan Li, Kaitao Yuan, Liang Liu and Lingdong Meng
Processes 2025, 13(4), 1109; https://doi.org/10.3390/pr13041109 - 7 Apr 2025
Viewed by 280
Abstract
This study systematically investigates the heterogeneity of the Chang 6 reservoir in the Wuqi–Dingbian region of the Ordos Basin through integrated petrographic analysis using scanning electron microscopy (SEM), thin-section petrography, and mercury intrusion porosimetry. The results reveal that this feldspathic sandstone reservoir exhibits [...] Read more.
This study systematically investigates the heterogeneity of the Chang 6 reservoir in the Wuqi–Dingbian region of the Ordos Basin through integrated petrographic analysis using scanning electron microscopy (SEM), thin-section petrography, and mercury intrusion porosimetry. The results reveal that this feldspathic sandstone reservoir exhibits significant compositional and textural variations controlled by depositional environments. Dingbian samples displayed elevated feldspar (avg. 42.3%), lithic fragments (18.1%), and carbonate cementation (15.7%), accompanied by intense mechanical compaction and cementation processes. Pore systems in Dingbian were dominated by residual intergranular pores (58–62% of total porosity) and secondary dissolution pores. In contrast, Wuqi reservoirs demonstrated superior pore connectivity through well-developed intergranular pores (65–72%), grain boundary pores, and microfracture networks. Pore throat characterization revealed distinct architectural patterns: Wuqi exhibited broad bimodal/multimodal distributions (0.1–50 μm) with 35–40% macro-throat (>10 μm) contribution to flow capacity, while Dingbian showed narrow unimodal distributions (1–10 μm) with <15% macro-throat participation. These microstructural divergences fundamentally governed contrasting production behaviors. Wuqi wells achieved higher initial flow rates (15–20 m3/d) with 60–70% water cut, yet maintained stable production through effective displacement systems enabled by dominant macropores. Conversely, Dingbian wells produced lower yields (5–8 m3/d) with 75–85% water cut, experiencing rapid 30–40% initial declines that transitioned to prolonged low-rate production phases. This petrophysical framework provides critical insights for optimized development strategies in heterogeneous tight sandstone reservoirs, particularly regarding water management and enhanced oil recovery potential. Full article
(This article belongs to the Special Issue Advanced Technology in Unconventional Resource Development)
Show Figures

Figure 1

27 pages, 46975 KiB  
Article
A Study of the Geochemical Characteristics of Tourmaline-Supergroup Minerals from the Bozhushan Composite Granite Body in Southeastern Yunnan
by Xianchao Chen, Liurunxuan Chen, Shitao Zhang, Xuelong Liu, Qiuyun Song, Linlong Sun, Ruohan Zuo, Bode Lu and Jiehu Zhou
Minerals 2025, 15(3), 316; https://doi.org/10.3390/min15030316 - 19 Mar 2025
Viewed by 657
Abstract
The Bozhushan in southeastern Yunnan is a composite granite body that was formed by multi-phase magmatic intrusion. The genesis of the tourmaline-supergroup minerals occurring therein remains uncertain, as it has been the subject of only a limited number of studies. This investigation employs [...] Read more.
The Bozhushan in southeastern Yunnan is a composite granite body that was formed by multi-phase magmatic intrusion. The genesis of the tourmaline-supergroup minerals occurring therein remains uncertain, as it has been the subject of only a limited number of studies. This investigation employs an integrated analytical approach combining EPMA, LA-ICP-MS, and boron isotope geochemistry, supplemented by detailed field geological investigations and petrographic observations of tourmaline textural characteristics. This study aims to elucidate the genetic relationships between distinct tourmaline varieties, establish temporal correlations between mineral crystallization stages and magmatic–hydrothermal evolution processes, and evaluate the petrogenetic significance of tourmaline geochemical signatures for regional mineralization events. This study analyzes tourmaline-supergroup minerals in granitic pegmatites and aplites, which occur as nodular, radial, and columnar aggregates. Most tourmaline crystals exhibit well-defined rhythmic zoning patterns, which are clearly observable under cross-polarized light microscopy. Chemical composition analysis has identified two tourmaline species: schorl and dravite. The formation of tourmaline is primarily of magmatic origin and is characterized by a magmatic–hydrothermal transition. It predominantly belongs to the alkali subgroup and is formed in Li-poor granitoids and associated pegmatites and aplites, Ca-poor metapelites, metapsammites, and quartz-tourmaline rocks. The inter-ionic substitution mechanism in this system is predominantly governed by Fe2+Mg−1 and (XvacAl)(NaR2+)−1 exchange equilibria. Additionally, geochemical evidence indicates that the primary ore-forming fluids originate from granitic magmas, which are likely sourced from the partial melting of metasedimentary rocks. During the late Yanshan period, the upwelling of granitic magma in the Bozhushan area introduced a substantial heat source and mineralizing fluids, which interacted with the Cambrian units to form tungsten–tin mineralization. The geochemical data on tourmaline indicate that the Bozhushan granite body has considerable potential for ore mineralization. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

27 pages, 13194 KiB  
Article
Petrographic Analysis of Mafic and Ultramafic Rocks in Northern Thailand: Implications for CO2 Mineralization and Enhanced Rock Weathering Approach
by Tadsuda Taksavasu
Geosciences 2025, 15(3), 89; https://doi.org/10.3390/geosciences15030089 - 1 Mar 2025
Viewed by 2226
Abstract
Mafic and ultramafic rocks have become a promising approach for atmospheric carbon dioxide (CO2) reduction, as they are major sources of CO2-reactive minerals, i.e., olivine, pyroxene, plagioclase, and serpentine. The minerals potentially sequester CO2 by turning it into [...] Read more.
Mafic and ultramafic rocks have become a promising approach for atmospheric carbon dioxide (CO2) reduction, as they are major sources of CO2-reactive minerals, i.e., olivine, pyroxene, plagioclase, and serpentine. The minerals potentially sequester CO2 by turning it into a stable solid phase through carbon mineralization in the rock weathering process. However, detailed descriptions and evaluations of the target formations are lacking. This study investigates the mineralogical composition and microtextural characteristics of representative mafic and ultramafic rocks observed in northern Thailand, using a petrographic analysis. The results show that variations in CO2-reactive mineral assemblages of rocks certainly affect their theoretical CO2 uptake potential. Ultramafic rocks tend to sequester larger amounts of CO2 than mafic rocks. The microtextural observation reveals the mineral size ranges of 0.05–5 mm for ultramafic and mafic intrusive rocks and 0.01–2 mm for mafic extrusive and metamorphosed rocks. Reducing the rock size to be equal to the average size of the reactive minerals could be considered one of the practical designs in enhanced rock weathering activities. Understanding the mineralogical and textural characteristics of target rocks thus plays a crucial role in further georesource exploration and engineering designs, supporting climate action strategies on various scales. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

19 pages, 10758 KiB  
Article
Archaeometric Investigation of Artificial Stone Materials from the Theatrum Marcelli (Rome, Italy)
by Maria Aantonietta Zicarelli, Michela Ricca, Maria Francesca Alberghina, Salvatore Schiavone, Mauro Francesco La Russa and Luciana Randazzo
Heritage 2025, 8(2), 57; https://doi.org/10.3390/heritage8020057 - 31 Jan 2025
Viewed by 1024
Abstract
This study illustrates the results of minero-petrographic and microchemical investigations of artificial stone materials (mortars, plasters, and bricks) taken from the Theatrum Marcelli (Rome, Italy). To achieve this objective, the artificial building materials were analysed using Polarized Optical Microscopy (POM) and a Scanning [...] Read more.
This study illustrates the results of minero-petrographic and microchemical investigations of artificial stone materials (mortars, plasters, and bricks) taken from the Theatrum Marcelli (Rome, Italy). To achieve this objective, the artificial building materials were analysed using Polarized Optical Microscopy (POM) and a Scanning Electron Microscope (SEM) used in backscattered electron (BSE) mode and coupled with an Energy-Dispersive Spectrometer (EDS) after a sampling campaign. The POM was aimed at collecting information on the textural and mineralogical characteristics of the samples (identification of the main minerals constituting the aggregate, grain size and shape, and the evaluation of the binder/aggregate ratio). The data also supported technological assessments through the characterization of the raw materials used for the manufacture of the mortars/plasters. Furthermore, the SEM-EDS investigations revealed the chemical composition of both the aggregate and the binder, which was useful for estimating their hydraulicity index (HI). The diagnostic campaign allowed us to obtain interesting information on the plasters/mortars used in the Theatrum Marcelli, together with their probable production technology. In particular, the raw materials were quite homogeneous, thus confirming the traditional methodology used in Roman times to create natural hydraulic mortars by the addition of pozzolanic volcanic material to aerial lime. The volcanic component of the aggregate seems to be compatible with the ultrapotassic products of the Roman Magmatic Province—likely with the Pozzolane Rosse pyroclastic deposit of the Alban Hills district. Full article
Show Figures

Figure 1

33 pages, 15434 KiB  
Article
Persisting Rock-Buffered Conditions in the Upper Triassic and Lower Jurassic Dolomites of the Central Apennines (Italy) During Diagenesis, Burial, and Thrusting
by Alessio Lucca, Silvia Mittempergher, Fabrizio Balsamo, Anna Cipriani, Antonino Cilona and Fabrizio Storti
Geosciences 2025, 15(2), 35; https://doi.org/10.3390/geosciences15020035 - 22 Jan 2025
Cited by 1 | Viewed by 1404
Abstract
Basin-scale dolomitization of carbonate sequences occurs over long time spans and results from diagenesis, burial, and tectonically driven fluid fluxes. Depicting the different geological processes producing dolomitized carbonate sequences requires combining accurate field, petrographic, and geochemical analyses. Here, we investigate the dolomitization processes [...] Read more.
Basin-scale dolomitization of carbonate sequences occurs over long time spans and results from diagenesis, burial, and tectonically driven fluid fluxes. Depicting the different geological processes producing dolomitized carbonate sequences requires combining accurate field, petrographic, and geochemical analyses. Here, we investigate the dolomitization processes in carbonates of the Norian to Toarcian age exposed in the Gran Sasso Massif, Central Apennines of Italy, by integrating field observations, standard and CL petrography, carbon, oxygen, strontium and clumped isotopes, minor elements, and X-ray diffractometry. The carbonates show pervasive replacive dolomitization, and dolomite cements are observed in bed-parallel and thrust-related veins. Replacive dolomites show incomplete replacement from modified seawater in oxidizing conditions, with minimum temperatures of 40–65 °C and a 87Sr/86Sr lower than coeval seawater. The first dolomitization event started at shallow burial in the Late Triassic–Early Jurassic and was later affected by replacement at intermediate burial depths. Bedding-parallel dolomite veins crystallized due to fluid overpressures at deep burial depths in a rock-buffered system without variations in geochemistry. Fault-related dolomites cemented thrust-related fractures during compressional deformation in the Messinian–Early Pliocene from seawater modified by mixing with external fluids. Precipitation temperatures of replacive, bedding-parallel, and fault-related dolomite veins are similar. Despite the dolomite types being characterized by different textures and petrographic features, rock-buffered conditions resulted in insignificant variations of their geochemical properties. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

22 pages, 9430 KiB  
Article
Pyrite Textures, Trace Element Geochemistry and Galena Pb Isotopes of the Yanzhupo Gold Deposit in the Jiangnan Orogen, South China: Implications for Gold Mineralization Genesis
by Jia Liao, Xu Wang, Biao Chen, Buqing Wang, Zhenhua Zhu, Wentao Wang, Ding Peng, Qian Zhang, Zhuang Liu and Qiangqiang Xu
Minerals 2025, 15(1), 94; https://doi.org/10.3390/min15010094 - 20 Jan 2025
Cited by 1 | Viewed by 1372
Abstract
The northeastern Hunan district in the Jiangnan Orogen (South China) holds significant gold resources, whose genesis remains perplexing, especially in terms of the gold source and mineralization process. Yanzhupo (2.50 t @ 2.52 g/t) is a newly discovered gold deposit in the northeastern [...] Read more.
The northeastern Hunan district in the Jiangnan Orogen (South China) holds significant gold resources, whose genesis remains perplexing, especially in terms of the gold source and mineralization process. Yanzhupo (2.50 t @ 2.52 g/t) is a newly discovered gold deposit in the northeastern Hunan district and is characterized by multiple generations of pyrite. Its alteration/mineralization can be divided into three stages: (I) quartz-ankerite-pyrite; (II) quartz-ankerite-chlorite-pyrite-gold; (III) quartz-ankerite-calcite-pyrite. Petrographic observations and back-scattered electron (BSE) imaging revealed six generations of pyrite: Cu-Au rich bright rims (Py1a) and porous cores (Py1b) in Stage I, Py2a with homogenous textures, Py2b with oscillatory zoning and Py2c with homogenous textures in Stage II and Py3 with homogenous textures in Stage III. Galena Pb isotopes, similar to the Wangu deposit, and pyrite chemical compositions show that the ore-forming materials of Yanzhupo came from deep magma, and some metal elements may be extracted from deep basement by fluid-mineral interactions during the upward migration of hydrothermal-magmatic fluid. The positive correlation between Cu and Au in pyrite reflects the oxidized ore-forming fluids. The enrichment of Cu and Au in Py1a reflects the precipitation of pyrite under high temperature fluid, forming the primary enrichment of Au. Porous Py1b is characterized by lower trace elements than Py1a, sharp reaction front and rich chalcopyrite and galena inclusions, indicating Py1b formed via coupled dissolution-reprecipitation (CDR) reactions of Py1a. The CDR reactions promoted by the oxidizing fluid itself re-release Au into the fluid. From Py2a to Py2c, the contents of As, Sb and Pb first increased and then decreased, which may reflect the increase of fluid pH caused by sulfidation of the wall rocks and the impoverishment of ore-forming fluids caused by the precipitation of a large number of elements. The sulfidation of the wall rocks in Stage II destroyed the stability of the Au(HS)2 and Au (HS)S3 complexes and led to the deposition of native gold. The barren ore-forming fluids precipitated homogenous Py3 in a stable environment. Therefore, we think that the Yanzhupo gold deposit may have been associated with magmatic-hydrothermal activity, and the mineralization mechanism may be CDR reactions and sulfidation of the wall rocks. Full article
Show Figures

Figure 1

19 pages, 10871 KiB  
Article
The Development of Dolomite Within a Sequence Stratigraphic Framework: Cambrian Series 2 Changping Formation, Xiaweidian, China
by Shan Zhong, Zhaoqian Liu, Zhenkui Jin, Hongyu Tian, Madaki Agwom Istifanus and Simon C. George
Minerals 2024, 14(12), 1189; https://doi.org/10.3390/min14121189 - 22 Nov 2024
Cited by 1 | Viewed by 1149
Abstract
The Lower Cambrian Changping Formation in the Western Hills of Beijing hosts tidal flat and lagoonal carbonates comprising dolomites, limestones, and dolomitic limestones, reflecting the processes of dolomite cementation and dolomitization within a sedimentary framework. Based on petrographic textures, two types of dolomites [...] Read more.
The Lower Cambrian Changping Formation in the Western Hills of Beijing hosts tidal flat and lagoonal carbonates comprising dolomites, limestones, and dolomitic limestones, reflecting the processes of dolomite cementation and dolomitization within a sedimentary framework. Based on petrographic textures, two types of dolomites were identified: microcrystalline dolomite and fine-mesocrystalline dolomite. Integrating petrological and geochemical data unveils two diagenetic stages. The initial dolomite formation, attributed to hypersaline fluids, occurred in a supratidal-sabkha setting during the early Cambrian. The dolomitization at the top of the Changping Formation, driven by evaporatively concentrated brines from the overlying Mantou Formation, altered peritidal carbonates. This study evaluates the original sedimentary environment and dolomitization within a sequence stratigraphic context, revealing a correlation between dolomitization episodes and the stratigraphic framework in the study area. Factors influencing this framework profoundly impact depositional environments and material composition, leading to micromorphological differences in dolomites. Sabkha dolomite formation, associated with evaporative pumping, predominates near the base of transgressive systems tracts. Seepage reflux dolomite, often linked with evaporative pumping dolomite, constitutes a vertical cycle in the sequence framework. The sequence from bottom to top is sabkha microcrystalline dolomite, limestone and dolomitic limestone, seepage reflux saccharoidal dolostone, and sabkha dolomite. Full article
Show Figures

Graphical abstract

15 pages, 19310 KiB  
Article
Kavokta Deposit, Middle Vitim Mountain Country, Russia: Composition and Genesis of Dolomite Type Nephrite
by Evgeniy V. Kislov
Geosciences 2024, 14(11), 303; https://doi.org/10.3390/geosciences14110303 - 10 Nov 2024
Cited by 2 | Viewed by 1259
Abstract
The Kavokta deposit of the dolomite type nephrite is located in the Middle Vitim mountain country, Russia (Russian Federation). The deposit area is composed of granite of the Late Paleozoic Vitimkan complex. The granite contains complex shape blocks of Lower Proterozoic rocks. They [...] Read more.
The Kavokta deposit of the dolomite type nephrite is located in the Middle Vitim mountain country, Russia (Russian Federation). The deposit area is composed of granite of the Late Paleozoic Vitimkan complex. The granite contains complex shape blocks of Lower Proterozoic rocks. They are represented by metasandstone, crystalline schist, amphibolite, and dolomite marble. The calcite–tremolite and epidote–tremolite skarns were formed on the contact of dolomite and amphibolite. Calcite–tremolite skarn contains nephrite bodies. The mineral composition of 16 core samples obtained during the geological exploration conducted by JSC “Transbaikal Mining Enterprise” within Vein 1 of Prozrachny site has been studied in thin sections using a petrographic microscope, and in polished sections using a scanning electron microscope, with an energy-dispersive microanalysis system. Twenty-five minerals have been identified. They have been attributed to relict, metasomatic associations of the pre-nephrite and nephrite stages and hydrothermal and secondary associations. The intensity of the nephrite’s green color is explained by the Fe admixture in tremolite, and the black color is explained by its transition to actinolite in the areas of contact with epidote–tremolite skarn after amphibolite. In the formation and alteration of nephrite, dolomite is replaced by diopside, diopside by tremolite, prismatic tremolite by tangled fibrous tremolite, and tremolite by chlorite. Granite provides heat for metasomatism. Participation of amphibolite in the nephrite formation determines the variety of nephrite colors. The role of metamorphism is reduced to tectonic fragmentation facilitating fluid penetration; stress provides a tangled fibrous cryptocrystalline texture. Full article
Show Figures

Figure 1

20 pages, 7095 KiB  
Article
Petrography of Ophiolitic Detritus from a Miocene Conglomerate Formation on Darnó Hill, SW Bükk Mts (N Hungary): A Unique Tool to Trace Covered Ophiolitic Sequences
by Sándor Józsa
Minerals 2024, 14(10), 983; https://doi.org/10.3390/min14100983 - 29 Sep 2024
Cited by 1 | Viewed by 862
Abstract
Petrographic studies have been carried out on the Early Miocene Darnó Conglomerate Formation, which consists only of debris of ophiolitic mélange and is found today on Darnó Hill in SW Bükk, NE Hungary. The studied sediments are bounded by the Darnó line from [...] Read more.
Petrographic studies have been carried out on the Early Miocene Darnó Conglomerate Formation, which consists only of debris of ophiolitic mélange and is found today on Darnó Hill in SW Bükk, NE Hungary. The studied sediments are bounded by the Darnó line from Darnó Hill. The aim of this work was to show if it is possible to reconstruct the petrographic composition of the source area only from its debris. The rock types were determined in thin sections using a polarizing microscope, and a quantitative analysis of the different rock types was carried out using the grain counting method, the results of which were interpreted as volume ratios. The main rock types observed in the studied samples (textural varieties of basalt, dolerite/microgabbro, claystone, siltstone, and radiolarite) are similar to the rock types of the mélange assemblage of Darnó Hill. Based on the volume calculations of basaltic detrital grains with different textures characteristic for pillow basalts, it could be established that pillow basalts dominated the igneous rocks in the source area of the Darnó Conglomerate on Darnó Hill already in the Miocene. Thus, this work shows that the lithological composition of a source area can be precisely outlined by a detailed petrographic analysis of the debris eroded from the immediate vicinity. Full article
(This article belongs to the Special Issue Submarine Volcanism, Related Hydrothermal Systems and Mineralizations)
Show Figures

Figure 1

19 pages, 6614 KiB  
Article
The Genesis of Ultramafic Rock Mass on the Northern Slope of Lüliang Mountain in North Qaidam, China
by Haiming Guo, Yanguang Li, Bo Chen, Huishan Zhang, Xiaoyong Yang, Li He, Yongjiu Ma, Yunping Li, Jincheng Luo and Haichao Zhao
Minerals 2024, 14(9), 871; https://doi.org/10.3390/min14090871 - 27 Aug 2024
Viewed by 995
Abstract
The ultramafic rock located on the northern slope of Lüliang Mountain in the northwestern region of North Qaidam Orogen is altered to serpentinite. The occurrence of disseminated chromite within the serpentinite holds significant implications for understanding the petrogenesis of the protolith. This work [...] Read more.
The ultramafic rock located on the northern slope of Lüliang Mountain in the northwestern region of North Qaidam Orogen is altered to serpentinite. The occurrence of disseminated chromite within the serpentinite holds significant implications for understanding the petrogenesis of the protolith. This work provides strong evidence of a distinct zonal texture in the chromite found in the ultramafic rock, using petrographic microstructure and electron probe composition analysis. The core of the chromite is characterized by high contents of Cr#, with enrichment in Fe3+# (Fe3+/(Cr + Al + Fe3+)) and depletion in Al2O3 and TiO2. The Cr2O3 content ranges from 51.64% to 53.72%, while the Cr# values range from 0.80 to 0.84. The FeO content varies from 24.9% to 27.8%, while the Fe2O3 content ranges from 5.19% to 8.74%. The Al2O3 content ranges from 6.70% to 9.20%, and the TiO2 content is below the detection limit (<0.1%). Furthermore, the rocks exhibit Mg# values ranging from 0.13 to 0.25 and Fe3+# values ranging from 0.07 to 0.12. The mineral chemistry of the chromite core in the ultramafic rock suggests it to be from an ophiolite. This ophiolite originated from the fore-arc deficit asthenosphere in a supra-subduction zone. The estimated average crystallization temperature and pressure of the chromite are 1306.02 °C and 3.41 GPa, respectively. These values suggest that the chromite formed at a depth of approximately 110 km, which is comparable to that of the asthenosphere. The chromite grains are surrounded by thick rims composed of Cr-rich magnetite characterized by enrichment in Fe3+# contents and depletions in Cr2O3, Al2O3, TiO2, and Cr#. The FeO content ranges from 28.25% to 31.15%, while the Fe2O3 content ranges from 44.94% to 68.92%. The Cr2O3 content ranges from 0.18% to 23.59%, and the Al2O3 and TiO2 contents are below the detection limit (<0.1%). Moreover, the rim of the Cr-rich magnetite exhibits Cr# values ranging from 0.90 to 1.00, Mg# values ranging from 0.01 to 0.06, and Fe3+# values ranging from 0.64 to 1.00, indicating late-stage alteration processes. The LA-ICP-MS zircon U-Pb dating of the ultramafic rock yielded an age of 480.6 ± 2.4 Ma (MSWD = 0.46, n = 18), representing the crystallization age of the ultramafic rock. This evidence suggests that the host rock of chromite is an ultramafic cumulate, which is part of the ophiolite suite. It originated from the fore-arc deficit asthenosphere in a supra-subduction zone during the northward subduction of the North Qaidam Ocean in the Ordovician period. Furthermore, clear evidence of Fe-hydrothermal alteration during the post-uplift-denudation stage is observed. Full article
(This article belongs to the Special Issue Metallogenesis of the Central Asian Orogenic Belt)
Show Figures

Figure 1

Back to TopTop