Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = peptide imprinting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2492 KiB  
Review
Antioxidant Peptides Derived from Woody Oil Resources: Mechanisms of Redox Protection and Emerging Therapeutic Opportunities
by Jia Tu, Jie Peng, Li Wen, Changzhu Li, Zhihong Xiao, Ying Wu, Zhou Xu, Yuxi Hu, Yan Zhong, Yongjun Miao, Jingjing Xiao and Sisi Liu
Pharmaceuticals 2025, 18(6), 842; https://doi.org/10.3390/ph18060842 - 4 Jun 2025
Viewed by 703
Abstract
Antioxidant peptides derived from woody oil resource by-products exhibit strong free radical scavenging abilities and offer potential applications in functional foods, nutraceuticals, and cosmetics. This review summarizes the latest advances in preparation technologies, including enzymatic hydrolysis, microbial fermentation, chemical synthesis, recombinant expression, and [...] Read more.
Antioxidant peptides derived from woody oil resource by-products exhibit strong free radical scavenging abilities and offer potential applications in functional foods, nutraceuticals, and cosmetics. This review summarizes the latest advances in preparation technologies, including enzymatic hydrolysis, microbial fermentation, chemical synthesis, recombinant expression, and molecular imprinting, each with distinct advantages in yield, selectivity, and scalability. The structure–activity relationships of antioxidant peptides are explored with respect to amino acid composition, molecular weight, and 3D conformation, which collectively determine their bioactivity and stability. Additionally, emerging delivery systems—such as nanoliposomes, microencapsulation, and cell-penetrating peptides—are discussed for their role in enhancing peptide stability, absorption, and targeted release. Mechanistic studies reveal that antioxidant peptides from woody oil resources act through network pharmacology, engaging core signaling pathways, including Nrf2/ARE, PI3K/Akt, AMPK, and JAK/STAT, to regulate oxidative stress, mitochondrial health, and inflammation. Preliminary safety data from in vitro, animal, and early clinical studies suggest low toxicity and favorable tolerability. The integration of omics technologies, molecular docking, and bioinformatics is accelerating the mechanism-driven design and functional validation of peptides. In conclusion, antioxidant peptides derived from woody oil resources represent a sustainable, multifunctional, and scalable solution for improving human health and promoting a circular bioeconomy. Future research should focus on structural optimization, delivery enhancement, and clinical validation to facilitate their industrial translation. Full article
Show Figures

Figure 1

13 pages, 1977 KiB  
Article
Stamp-Imprinted Polymer EIS Biosensor for Amyloid-Beta Detection: A Novel Approach Towards Alzheimer’s Screening
by Chloé E. D. Davidson and Ravi Prakash
Biosensors 2025, 15(4), 228; https://doi.org/10.3390/bios15040228 - 3 Apr 2025
Viewed by 821
Abstract
Surface-imprinted polymers (SIPs) represent an exciting and cost-effective alternative to antibodies for electrochemical impedance spectroscopy (EIS)-based biosensing. They can be produced using simple printing techniques and have shown high efficacy in detecting large biomolecules and microorganisms. Stamp imprinting, a novel SIP method, creates [...] Read more.
Surface-imprinted polymers (SIPs) represent an exciting and cost-effective alternative to antibodies for electrochemical impedance spectroscopy (EIS)-based biosensing. They can be produced using simple printing techniques and have shown high efficacy in detecting large biomolecules and microorganisms. Stamp imprinting, a novel SIP method, creates the target analyte’s imprint using a soft lithography mask of the analyte matrix, thereby reducing material complexities and eliminating the need for cross-linking, which makes the process more scalable than the conventional SIPs. In this work, we demonstrate a stamp-imprinted EIS biosensor using a biocompatible polymer, polycaprolactone (PCL), for quantifying amyloid beta-42 (Aβ-42), a small peptide involved in the pathophysiology of Alzheimer’s disease. The evaluated SIP-EIS biosensors showed a detection limit close to 10 fg/mL, and a detection range covering the physiologically relevant concentration range of the analyte in blood serum (from 10 fg/mL to 10 μg/mL). The device sensitivity, which is found to be comparable to antibody-based EIS devices, demonstrates the potential of SIP-EIS biosensors as an exciting alternative to conventional antibody-based diagnostic approaches. We also evaluate the viability of analyzing these proteins in complex media, notably in the presence of serum albumin proteins, which cause biofouling and non-specific interactions. The combination of high sensitivity, selectivity, and ease of fabrication makes SIP-EIS biosensors particularly suited for portable and point-of-care applications. Full article
(This article belongs to the Special Issue Recent Developments in Micro/Nano Sensors for Biomedical Applications)
Show Figures

Figure 1

8 pages, 1880 KiB  
Article
Surface-Imprinted Acrylamide Polymer-Based Reduced Graphene–Gold Sensor in Rapid and Sensitive Electrochemical Determination of αB-Conotoxin
by Jia Cao, Jiayue Li, Tianyang Yu and Fei Wang
Sensors 2025, 25(5), 1408; https://doi.org/10.3390/s25051408 - 26 Feb 2025
Viewed by 630
Abstract
The quantitative determination of conotoxins has great potential in the development of natural marine peptide pharmaceuticals. Considering the time-consuming sample pretreatment and expensive equipment in MS or LC-MS/MS analysis, an electrochemical sensor combined with molecularly imprinted polymer (MIP) is fabricated for the rapid [...] Read more.
The quantitative determination of conotoxins has great potential in the development of natural marine peptide pharmaceuticals. Considering the time-consuming sample pretreatment and expensive equipment in MS or LC-MS/MS analysis, an electrochemical sensor combined with molecularly imprinted polymer (MIP) is fabricated for the rapid monitoring of conotoxin αB-VxXXIVA to promote its pharmaceutical value and eliminate the risk of human poisoning. Electrochemically reduced graphene oxide–gold composite (rGO-Au) is modified with chitosan (CS) and glutaraldehyde (GA) to immobilize the macromolecular peptide, conotoxin αB-VxXXIVA. Subsequently, acrylamide (AAM) with a cross-linking agent, N,N′-methylene-bisacrylamide (NNMBA), is introduced into the rGO-Au electrode to form MIPs by electro-polymerization. The proposed MIP-based electrochemical sensor, PAM/αB-CTX/CS-GA/rGO-Au/SPE, exhibits satisfactory sensing performance in the detection of αB-VxXXIVA. Based on current change versus logarithm concentration, a wide linear range from 0.1 to 10,000 ng/mL and a low detection limit (LOD) of 0.014 ng/mL for this sensor are obtained. This work provides a promising method in electrochemical determination combined with MIP for the determination of macromolecular peptides. Full article
(This article belongs to the Collection Sensors and Biosensors for Environmental and Food Applications)
Show Figures

Figure 1

10 pages, 4702 KiB  
Communication
Electrochemical Determination of B-Type Natriuretic Peptide with an Epitope-Imprinted Polymer-Based Sensor
by Kai-Hsi Liu, James L. Thomas, Pei-Chia Chu, Jing-Chen Ciou, Chuen-Yau Chen, Hung-Yin Lin and Mei-Hwa Lee
Biosensors 2024, 14(11), 533; https://doi.org/10.3390/bios14110533 - 4 Nov 2024
Viewed by 1740
Abstract
B-type natriuretic peptides (BNP) are produced and secreted by the myocardium to reduce blood pressure and cardiac load. They cause vasodilation, natriuresis, growth suppression, and inhibition of the sympathetic nervous system and the renin–angiotensin–aldosterone system. The measurement of plasma BNP levels provides clinically [...] Read more.
B-type natriuretic peptides (BNP) are produced and secreted by the myocardium to reduce blood pressure and cardiac load. They cause vasodilation, natriuresis, growth suppression, and inhibition of the sympathetic nervous system and the renin–angiotensin–aldosterone system. The measurement of plasma BNP levels provides clinically useful information concerning the diagnosis and management of left ventricular dysfunction and heart failure, complementing other diagnostic testing procedures. In this work, three epitopes from the N-terminal (BNPnt), C-terminal (BNPct), and the cystine-bridged cyclic peptides (BNPr) of B-type natriuretic peptides were synthesized as templates for molecular imprinting. These peptides were doped into aniline (AN) and m-aminobenzenesulfonic acid (MSAN) for electropolymerization, thus forming epitope-imprinted poly(AN-co-MSAN) conductive films (EIPs). The monomer ratio was optimized using the electrochemical signals during polymerization. The optimized films were then characterized using a scanning electron microscope (SEM), atomic force microscope (AFM), and AC impedance. The electrochemical response of the films to the target peptides and to BNP was then measured. The sensing range of the EIPs-coated electrodes was from 0.001 to 1000 pg/mL for BNP. Finally, the BNP concentration in diluted serum samples was measured with the BNPrIP-coated electrode, giving 3.15 ± 0.07 pg/mL. By spiking the sample with known BNP concentrations, the accuracy was determined to be better than ±5%. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

9 pages, 923 KiB  
Brief Report
Loss-of-Imprinting of HM13 Leads to Poor Prognosis in Clear Cell Renal Cell Carcinoma
by Floris Voorthuijzen, Cedric Stroobandt, Wim Van Criekinge, Tine Goovaerts and Tim De Meyer
Biomolecules 2024, 14(8), 936; https://doi.org/10.3390/biom14080936 - 2 Aug 2024
Cited by 1 | Viewed by 1531
Abstract
Genomic imprinting refers to the epigenetic silencing of one of both alleles in a parent-of-origin-specific manner, particularly in genes regulating growth and development. Impaired genomic imprinting leading to the activation of the silenced allele, also called canonical loss-of-imprinting (LOI), is considered an early [...] Read more.
Genomic imprinting refers to the epigenetic silencing of one of both alleles in a parent-of-origin-specific manner, particularly in genes regulating growth and development. Impaired genomic imprinting leading to the activation of the silenced allele, also called canonical loss-of-imprinting (LOI), is considered an early factor in oncogenesis. As LOI studies in clear cell renal cell carcinoma (ccRCC) are limited to IGF2, we performed a genome-wide analysis in 128 kidney normal solid tissue and 240 stage 1 ccRCC samples (TCGA RNA-seq data) to screen for canonical LOI in early oncogenesis. In ccRCC, we observed LOI (adj. p = 2.74 × 10−3) of HM13 (Histocompatibility Minor 13), a signal peptide peptidase involved in epitope generation. HM13 LOI samples featured HM13 overexpression, both compared to normal solid tissues (p = 3.00 × 10−7) and non-LOI (p = 1.27 × 10−2) samples. Upon adjustment for age and sex, HM13 expression was significantly associated with poor survival (p = 7.10 × 10−5). Moreover, HM13 overexpression consistently exacerbated with increasing tumor stage (p = 2.90 × 10−8). For IGF2, LOI was observed in normal solid tissues, but the prevalence did not increase in cancer. In conclusion, HM13 LOI is an early event in ccRCC, causing overexpression leading to poor prognosis. Full article
(This article belongs to the Special Issue Biomolecules in Development and Diseases of Urogenital System II)
Show Figures

Figure 1

29 pages, 7207 KiB  
Review
Recent Advances in Electrochemical Biosensors for Food Control
by Francesco Rizzotto, Majd Khalife, Yanxia Hou, Carole Chaix, Florence Lagarde, Natale Scaramozzino and Jasmina Vidic
Micromachines 2023, 14(7), 1412; https://doi.org/10.3390/mi14071412 - 13 Jul 2023
Cited by 20 | Viewed by 5007
Abstract
The rapid and sensitive detection of food contaminants is becoming increasingly important for timely prevention and treatment of foodborne disease. In this review, we discuss recent developments of electrochemical biosensors as facile, rapid, sensitive, and user-friendly analytical devices and their applications in food [...] Read more.
The rapid and sensitive detection of food contaminants is becoming increasingly important for timely prevention and treatment of foodborne disease. In this review, we discuss recent developments of electrochemical biosensors as facile, rapid, sensitive, and user-friendly analytical devices and their applications in food safety analysis, owing to the analytical characteristics of electrochemical detection and to advances in the design and production of bioreceptors (antibodies, DNA, aptamers, peptides, molecular imprinted polymers, enzymes, bacteriophages, etc.). They can offer a low limit of detection required for food contaminants such as allergens, pesticides, antibiotic traces, toxins, bacteria, etc. We provide an overview of a broad range of electrochemical biosensing designs and consider future opportunities for this technology in food control. Full article
(This article belongs to the Special Issue Feature Papers from Micromachines Reviewers 2023)
Show Figures

Figure 1

9 pages, 2981 KiB  
Communication
Biofunctionalization of HMX with Peptides via Polydopamine Crosslinking for Assembling an HMX@Al@CuO Nanoenergetic Composite
by Miaomiao Jin, Zhanxin Song, Wei Liu, Guozhen Wang and Mo Xian
Nanomaterials 2023, 13(12), 1837; https://doi.org/10.3390/nano13121837 - 10 Jun 2023
Cited by 3 | Viewed by 1689
Abstract
Biological approaches for the synthesis of a hybrid explosive–nanothermite energetic composite have attracted greater scientific attention because of their advantages, including their moderate reactions and the absence of secondary pollution. In this study, a simple technique was developed to fabricate a hybrid explosive–nanothermite [...] Read more.
Biological approaches for the synthesis of a hybrid explosive–nanothermite energetic composite have attracted greater scientific attention because of their advantages, including their moderate reactions and the absence of secondary pollution. In this study, a simple technique was developed to fabricate a hybrid explosive–nanothermite energetic composite based on a peptide and a mussel-inspired surface modification. Polydopamine (PDA) was easily imprinted onto the HMX, where it maintained its reactivity and was capable of reacting with a specific peptide used to introduce Al and CuO NPs to the surface of the HMX via specific recognition. The hybrid explosive–nanothermite energetic composites were characterized using differential scanning calorimetry (TG-DSC), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy(XPS), and a fluorescence microscope. A thermal analysis was utilized to investigate the energy-release properties of the materials. The HMX@Al@CuO, which benefitted from an enhanced interfacial contact in comparison with the physically mixed sample (HMX-Al-CuO), demonstrated a 41% lower HMX activation energy. Full article
Show Figures

Figure 1

19 pages, 1391 KiB  
Review
Human IGF2 Gene Epigenetic and Transcriptional Regulation: At the Core of Developmental Growth and Tumorigenic Behavior
by Pierluigi Scalia, Stephen J. Williams and Yoko Fujita-Yamaguchi
Biomedicines 2023, 11(6), 1655; https://doi.org/10.3390/biomedicines11061655 - 7 Jun 2023
Cited by 10 | Viewed by 5711
Abstract
Regulation of the human IGF2 gene displays multiple layers of control, which secures a genetically and epigenetically predetermined gene expression pattern throughout embryonal growth and postnatal life. These predominantly nuclear regulatory mechanisms converge on the function of the IGF2-H19 gene cluster on Chromosome [...] Read more.
Regulation of the human IGF2 gene displays multiple layers of control, which secures a genetically and epigenetically predetermined gene expression pattern throughout embryonal growth and postnatal life. These predominantly nuclear regulatory mechanisms converge on the function of the IGF2-H19 gene cluster on Chromosome 11 and ultimately affect IGF2 gene expression. Deregulation of such control checkpoints leads to the enhancement of IGF2 gene transcription and/or transcript stabilization, ultimately leading to IGF-II peptide overproduction. This type of anomaly is responsible for the effects observed in terms of both abnormal fetal growth and increased cell proliferation, typically observed in pediatric overgrowth syndromes and cancer. We performed a review of relevant experimental work on the mechanisms affecting the human IGF2 gene at the epigenetic, transcriptional and transcript regulatory levels. The result of our work, indeed, provides a wider and diversified scenario for IGF2 gene activation than previously envisioned by shedding new light on its extended regulation. Overall, we focused on the functional integration between the epigenetic and genetic machinery driving its overexpression in overgrowth syndromes and malignancy, independently of the underlying presence of loss of imprinting (LOI). The molecular landscape provided at last strengthens the role of IGF2 in cancer initiation, progression and malignant phenotype maintenance. Finally, this review suggests potential actionable targets for IGF2 gene- and regulatory protein target-degradation therapies. Full article
Show Figures

Figure 1

16 pages, 2794 KiB  
Article
A Novel NanoMIP–SPR Sensor for the Point-of-Care Diagnosis of Breast Cancer
by Kadir Erol, Gauri Hasabnis and Zeynep Altintas
Micromachines 2023, 14(5), 1086; https://doi.org/10.3390/mi14051086 - 21 May 2023
Cited by 20 | Viewed by 3554
Abstract
Simple, fast, selective, and reliable detection of human epidermal growth factor receptor 2 (HER2) is of utmost importance in the early diagnosis of breast cancer to prevent its high prevalence and mortality. Molecularly imprinted polymers (MIPs), also known as artificial antibodies, have recently [...] Read more.
Simple, fast, selective, and reliable detection of human epidermal growth factor receptor 2 (HER2) is of utmost importance in the early diagnosis of breast cancer to prevent its high prevalence and mortality. Molecularly imprinted polymers (MIPs), also known as artificial antibodies, have recently been used as a specific tool in cancer diagnosis and therapy. In this study, a miniaturized surface plasmon resonance (SPR)-based sensor was developed using epitope-mediated HER2-nanoMIPs. The nanoMIP receptors were characterized using dynamic light scattering (DLS), zeta potential, Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and fluorescent microscopy. The average size of the nanoMIPs was determined to be 67.5 ± 12.5 nm. The proposed novel SPR sensor provided superior selectivity to HER2 with a detection limit (LOD) of 11.6 pg mL−1 in human serum. The high specificity of the sensor was confirmed by cross-reactivity studies using P53, human serum albumin (HSA), transferrin, and glucose. The sensor preparation steps were successfully characterized by employing cyclic and square wave voltammetry. The nanoMIP–SPR sensor demonstrates great potential for use in the early diagnosis of breast cancer as a robust tool with high sensitivity, selectivity, and specificity. Full article
(This article belongs to the Special Issue State-of-the-Art Optical Biosensors)
Show Figures

Figure 1

10 pages, 4537 KiB  
Communication
Activation of Insulin Gene Expression via Transfection of a CRISPR/dCas9a System Using Magnetic Peptide-Imprinted Nanoparticles
by Mei-Hwa Lee, James L. Thomas, Chien-Yu Lin, Yi-Chen Ethan Li and Hung-Yin Lin
Pharmaceutics 2023, 15(4), 1311; https://doi.org/10.3390/pharmaceutics15041311 - 21 Apr 2023
Cited by 2 | Viewed by 2917
Abstract
A CRISPRa transcription activation system was used to upregulate insulin expression in HEK293T cells. To increase the delivery of the targeted CRISPR/dCas9a, magnetic chitosan nanoparticles, imprinted with a peptide from the Cas9 protein, were developed, characterized, and then bound to dCas9a that was [...] Read more.
A CRISPRa transcription activation system was used to upregulate insulin expression in HEK293T cells. To increase the delivery of the targeted CRISPR/dCas9a, magnetic chitosan nanoparticles, imprinted with a peptide from the Cas9 protein, were developed, characterized, and then bound to dCas9a that was complexed with a guide RNA (gRNA). The adsorption of dCas9 proteins conjugated with activators (SunTag, VPR, and p300) to the nanoparticles was monitored using both ELISA kits and Cas9 staining. Finally, the nanoparticles were used to deliver dCas9a that was complexed with a synthetic gRNA into HEK293T cells to activate their insulin gene expression. Delivery and gene expression were examined using quantitative real-time polymerase chain reaction (qRT-PCR) and staining of insulin. Finally, the long-term release of insulin and the cellular pathway related to stimulation by glucose were also investigated. Full article
Show Figures

Figure 1

16 pages, 2491 KiB  
Review
Design of Polymeric Surfaces as Platforms for Streamlined Cancer Diagnostics in Liquid Biopsies
by Faezeh Ghorbanizamani, Hichem Moulahoum, Emine Guler Celik, Figen Zihnioglu, Tutku Beduk, Tuncay Goksel, Kutsal Turhan and Suna Timur
Biosensors 2023, 13(3), 400; https://doi.org/10.3390/bios13030400 - 18 Mar 2023
Cited by 7 | Viewed by 2786
Abstract
Minimally invasive approaches for cancer diagnosis are an integral step in the quest to improve cancer survival. Liquid biopsies such as blood samples are matrices explored to extract valuable information about the tumor and its state through various indicators, such as proteins, peptides, [...] Read more.
Minimally invasive approaches for cancer diagnosis are an integral step in the quest to improve cancer survival. Liquid biopsies such as blood samples are matrices explored to extract valuable information about the tumor and its state through various indicators, such as proteins, peptides, tumor DNA, or circulating tumor cells. Although these markers are scarce, making their isolation and detection in complex matrices challenging, the development in polymer chemistry producing interesting structures, including molecularly imprinted polymers, branched polymers, nanopolymer composites, and hybrids, allowed the development of enhanced platforms with impressive performance for liquid biopsies analysis. This review describes the latest advances and developments in polymer synthesis and their application for minimally invasive cancer diagnosis. The polymer structures improve the operational performances of biosensors through various processes, such as increased affinity for enhanced sensitivity, improved binding, and avoidance of non-specific interactions for enhanced specificity. Furthermore, polymer-based materials can be a tremendous help in signal amplification of usually low-concentrated targets in the sample. The pros and cons of these materials, how the synthesis process affects their performance, and the device applications for liquid biopsies diagnosis will be critically reviewed to show the essentiality of this technology in oncology and clinical biomedicine. Full article
(This article belongs to the Special Issue Emerging Biosensing Technologies for Healthcare Applications)
Show Figures

Figure 1

31 pages, 6807 KiB  
Review
Recent Advances in Recognition Receptors for Electrochemical Biosensing of Mycotoxins—A Review
by Manpreet Kaur, Jyoti Gaba, Komal Singh, Yashika Bhatia, Anoop Singh and Narinder Singh
Biosensors 2023, 13(3), 391; https://doi.org/10.3390/bios13030391 - 17 Mar 2023
Cited by 8 | Viewed by 3554
Abstract
Mycotoxins are naturally occurring toxic secondary metabolites produced by fungi in cereals and foodstuffs during the stages of cultivation and storage. Electrochemical biosensing has emerged as a rapid, efficient, and economical approach for the detection and quantification of mycotoxins in different sample media. [...] Read more.
Mycotoxins are naturally occurring toxic secondary metabolites produced by fungi in cereals and foodstuffs during the stages of cultivation and storage. Electrochemical biosensing has emerged as a rapid, efficient, and economical approach for the detection and quantification of mycotoxins in different sample media. An electrochemical biosensor consists of two main units, a recognition receptor and a signal transducer. Natural or artificial antibodies, aptamers, molecularly imprinted polymers (MIP), peptides, and DNAzymes have been extensively employed as selective recognition receptors for the electrochemical biosensing of mycotoxins. This article affords a detailed discussion of the recent advances and future prospects of various types of recognition receptors exploited in the electrochemical biosensing of mycotoxins. Full article
Show Figures

Figure 1

11 pages, 3912 KiB  
Communication
Synthesis of Fluorescent, Small, Stable and Non-Toxic Epitope-Imprinted Polymer Nanoparticles in Water
by Perla Benghouzi, Lila Louadj, Aurélia Pagani, Maylis Garnier, Jérôme Fresnais, Carlo Gonzato, Michèle Sabbah and Nébéwia Griffete
Polymers 2023, 15(5), 1112; https://doi.org/10.3390/polym15051112 - 23 Feb 2023
Viewed by 2489
Abstract
Molecularly imprinted polymers (MIPs) are really interesting for nanomedicine. To be suitable for such application, they need to be small, stable in aqueous media and sometimes fluorescent for bioimaging. We report herein, the facile synthesis of fluorescent, small (below 200 nm), water-soluble and [...] Read more.
Molecularly imprinted polymers (MIPs) are really interesting for nanomedicine. To be suitable for such application, they need to be small, stable in aqueous media and sometimes fluorescent for bioimaging. We report herein, the facile synthesis of fluorescent, small (below 200 nm), water-soluble and water-stable MIP capable of specific and selective recognition of their target epitope (small part of a protein). To synthesize these materials, we used dithiocarbamate-based photoiniferter polymerization in water. The use of a rhodamine-based monomer makes the resulting polymers fluorescent. Isothermal titration calorimetry (ITC) is used to determine the affinity as well as the selectivity of the MIP for its imprinted epitope, according to the significant differences observed when comparing the binding enthalpy of the original epitope with that of other peptides. The toxicity of the nanoparticles is also tested in two breast cancer cell lines to show the possible use of these particle for future in vivo applications. The materials demonstrated a high specificity and selectivity for the imprinted epitope, with a Kd value comparable with the affinity values of antibodies. The synthesized MIP are not toxic, which makes them suitable for nanomedicine. Full article
Show Figures

Figure 1

17 pages, 3496 KiB  
Article
Core-Shell Magnetic Imprinted Polymers for the Recognition of FLAG-Tagpeptide
by Elsa Lafuente-González, Miriam Guadaño-Sánchez, Idoia Urriza-Arsuaga and Javier Lucas Urraca
Int. J. Mol. Sci. 2023, 24(4), 3453; https://doi.org/10.3390/ijms24043453 - 9 Feb 2023
Cited by 5 | Viewed by 2300
Abstract
FLAG® tag (DYKDDDDK) is a small epitope peptide employed for the purification of recombinant proteins such as immunoglobulins, cytokines, and gene regulatory proteins. It provides superior purity and recoveries of fused target proteins when compared to the commonly used His-tag. Nevertheless, the [...] Read more.
FLAG® tag (DYKDDDDK) is a small epitope peptide employed for the purification of recombinant proteins such as immunoglobulins, cytokines, and gene regulatory proteins. It provides superior purity and recoveries of fused target proteins when compared to the commonly used His-tag. Nevertheless, the immunoaffinity-based adsorbents required for their isolation are far more expensive than the ligand-based affinity resin used in combination with the His-tag. In order to overcome this limitation we report herein the development of molecularly imprinted polymers (MIPs) selective to the FLAG® tag. The polymers were prepared by the epitope imprinting approach using a four amino acids peptide, DYKD, including part of the FLAG® sequence as template molecule. Different kinds of magnetic polymers were synthesised in aqueous and organic media also using different sizes of magnetite core nanoparticles. The synthesised polymers were used as solid phase extraction materials with excellent recoveries and high specificity for both peptides. The magnetic properties of the polymers confer a new, effective, simple, and fast method in the purification using FLAG® tag. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Spain)
Show Figures

Figure 1

17 pages, 5288 KiB  
Article
Development of a Point-of-Care SPR Sensor for the Diagnosis of Acute Myocardial Infarction
by Sunil Choudhary and Zeynep Altintas
Biosensors 2023, 13(2), 229; https://doi.org/10.3390/bios13020229 - 5 Feb 2023
Cited by 46 | Viewed by 5877
Abstract
A novel point-of-care surface plasmon resonance (SPR) sensor was developed for the sensitive and real-time detection of cardiac troponin I (cTnI) using epitope-imprinted molecular receptors. The surface coverage of a nano-molecularly imprinted polymer (nanoMIP)-functionalized SPR sensor chip and the size of nanoMIPs (155.7 [...] Read more.
A novel point-of-care surface plasmon resonance (SPR) sensor was developed for the sensitive and real-time detection of cardiac troponin I (cTnI) using epitope-imprinted molecular receptors. The surface coverage of a nano-molecularly imprinted polymer (nanoMIP)-functionalized SPR sensor chip and the size of nanoMIPs (155.7 nm) were characterized using fluorescence microscopy and dynamic light scattering techniques, respectively. Atomic force microscopy, electrochemical impedance spectroscopy, square wave voltammetry and cyclic voltammetry techniques confirmed the successful implementation of each step of the sensor fabrication. The SPR bio-detection assay was initially established by targeting the cTnI peptide template, and the sensor allowed the detection of the peptide in the concentration range of 100–1000 nM with a correlation coefficient (R2) of 0.96 and limit of detection (LOD) of 76.47 nM. The optimum assay conditions for protein recognition were subsequently determined, and the cTnI biomarker could be detected in a wide concentration range (0.78–50 ng mL−1) with high reproducibility (R2 = 0.91) and sensitivity (LOD: 0.52 ng mL−1). The overall sensor results were subjected to three binding isotherm models, where nanoMIP-cTnI interaction followed the Langmuir binding isotherm with the dissociation constant of 2.99 × 10−11 M, indicating a very strong affinity between the cTnI biomarker and epitope-imprinted synthetic receptor. Furthermore, the selectivity of the sensor was confirmed through studying with a control nanoMIP that was prepared by imprinting a non-specific peptide template. Based on the cross-reactivity tests with non-specific molecules (i.e., glucose, p53 protein, transferrin and bovine serum albumin), the nanoMIP-SPR sensor is highly specific for the target biomarker. The developed biomimetic sensor, relying on the direct assay strategy, holds great potential not only for the early and point-of-care testing of acute myocardial infarction but also for other life-threatening diseases that can be diagnosed by determining the elevated levels of certain biomarkers. Full article
(This article belongs to the Special Issue Advances in Molecular Biosensors)
Show Figures

Figure 1

Back to TopTop