Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = passive wrist motion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4196 KiB  
Article
Development and Efficacy Assessment of an Angle Sensor-Integrated Upper Limb Exoskeleton System for Autonomous Rehabilitation Training
by Linshuai Zhang, Xin Tian, Yaqi Fan, Tao Jiang, Shuoxin Gu and Lin Xu
Sensors 2025, 25(13), 3984; https://doi.org/10.3390/s25133984 - 26 Jun 2025
Viewed by 306
Abstract
In this study, we propose a rehabilitation training system that incorporates active and passive rehabilitation modes to enhance the convenience, efficacy, and safety of rehabilitation training for patients with upper limb hemiplegia. This system facilitates elbow flexion and extension as well as wrist [...] Read more.
In this study, we propose a rehabilitation training system that incorporates active and passive rehabilitation modes to enhance the convenience, efficacy, and safety of rehabilitation training for patients with upper limb hemiplegia. This system facilitates elbow flexion and extension as well as wrist and palm flexion and extension. The experimental results demonstrate that the exoskeleton robot on the affected limb exhibits a rapid response and maintains a highly synchronized movement with the unaffected upper limb equipped with an angle sensor, preserving stability and coordination throughout the movement process without significant delay affecting the overall motion. When the movement of the unaffected upper limb exceeds the predetermined angle threshold, the affected limb promptly initiates a protective mechanism to maintain its current posture. Upon equalization of the angles between the two limbs, the affected limb resumes synchronized movement, thereby ensuring the safety of the rehabilitation training. This research provides some insights into the functional improvements of safe and reliable upper limb exoskeleton rehabilitation training systems. Full article
Show Figures

Figure 1

63 pages, 37620 KiB  
Article
BLUE SABINO: Development of a BiLateral Upper-Limb Exoskeleton for Simultaneous Assessment of Biomechanical and Neuromuscular Output
by Christopher K. Bitikofer, Sebastian Rueda Parra, Rene Maura, Eric T. Wolbrecht and Joel C. Perry
Machines 2024, 12(9), 617; https://doi.org/10.3390/machines12090617 - 3 Sep 2024
Cited by 3 | Viewed by 2413
Abstract
Arm and hand function play a critical role in the successful completion of everyday tasks. Lost function due to neurological impairment impacts millions of lives worldwide. Despite improvements in the ability to assess and rehabilitate arm deficits, knowledge about underlying sources of impairment [...] Read more.
Arm and hand function play a critical role in the successful completion of everyday tasks. Lost function due to neurological impairment impacts millions of lives worldwide. Despite improvements in the ability to assess and rehabilitate arm deficits, knowledge about underlying sources of impairment and related sequela remains limited. The comprehensive assessment of function requires the measurement of both biomechanics and neuromuscular contributors to performance during the completion of tasks that often use multiple joints and span three-dimensional workspaces. To our knowledge, the complexity of movement and diversity of measures required are beyond the capabilities of existing assessment systems. To bridge current gaps in assessment capability, a new exoskeleton instrument is developed with comprehensive bilateral assessment in mind. The development of the BiLateral Upper-limb Exoskeleton for Simultaneous Assessment of Biomechanical and Neuromuscular Output (BLUE SABINO) expands on prior iterations toward full-arm assessment during reach-and-grasp tasks through the development of a dual-arm and dual-hand system, with 9 active degrees of freedom per arm and 12 degrees of freedom (six active, six passive) per hand. Joints are powered by electric motors driven by a real-time control system with input from force and force/torque sensors located at all attachment points between the user and exoskeleton. Biosignals from electromyography and electroencephalography can be simultaneously measured to provide insight into neurological performance during unimanual or bimanual tasks involving arm reach and grasp. Design trade-offs achieve near-human performance in exoskeleton speed and strength, with positional measurement at the wrist having an error of less than 2 mm and supporting a range of motion approximately equivalent to the 50th-percentile human. The system adjustability in seat height, shoulder width, arm length, and orthosis width accommodate subjects from approximately the 5th-percentile female to the 95th-percentile male. Integration between precision actuation, human–robot-interaction force-torque sensing, and biosignal acquisition systems successfully provide the simultaneous measurement of human movement and neurological function. The bilateral design enables use with left- or right-side impairments as well as intra-subject performance comparisons. With the resulting instrument, the authors plan to investigate underlying neural and physiological correlates of arm function, impairment, learning, and recovery. Full article
(This article belongs to the Special Issue Advances in Assistive Robotics)
Show Figures

Figure 1

14 pages, 1175 KiB  
Article
Investigation of Motor Learning Effects Using a Hybrid Rehabilitation System Based on Motion Estimation
by Kensuke Takenaka, Keisuke Shima and Koji Shimatani
Sensors 2024, 24(11), 3496; https://doi.org/10.3390/s24113496 - 29 May 2024
Viewed by 1206
Abstract
Upper-limb paralysis requires extensive rehabilitation to recover functionality for everyday living, and such assistance can be supported with robot technology. Against such a background, we have proposed an electromyography (EMG)-driven hybrid rehabilitation system based on motion estimation using a probabilistic neural network. The [...] Read more.
Upper-limb paralysis requires extensive rehabilitation to recover functionality for everyday living, and such assistance can be supported with robot technology. Against such a background, we have proposed an electromyography (EMG)-driven hybrid rehabilitation system based on motion estimation using a probabilistic neural network. The system controls a robot and functional electrical stimulation (FES) from movement estimation using EMG signals based on the user’s intention, enabling intuitive learning of joint motion and muscle contraction capacity even for multiple motions. In this study, hybrid and visual-feedback training were conducted with pointing movements involving the non-dominant wrist, and the motor learning effect was examined via quantitative evaluation of accuracy, stability, and smoothness. The results show that hybrid instruction was as effective as visual feedback training in all aspects. Accordingly, passive hybrid instruction using the proposed system can be considered effective in promoting motor learning and rehabilitation for paralysis with inability to perform voluntary movements. Full article
Show Figures

Figure 1

15 pages, 511 KiB  
Article
Modulation of Corticospinal Excitability during Action Observation in Patients with Disorders of Consciousness
by Mauro Mancuso, Lucia Mencarelli, Laura Abbruzzese, Benedetta Basagni, Pierluigi Zoccolotti, Cristiano Scarselli, Simone Capitani, Francesco Neri, Emiliano Santarnecchi and Simone Rossi
Brain Sci. 2024, 14(4), 371; https://doi.org/10.3390/brainsci14040371 - 11 Apr 2024
Cited by 1 | Viewed by 1798
Abstract
Brain imaging studies have recently provided some evidence in favor of covert cognitive processes that are ongoing in patients with disorders of consciousness (DoC) (e.g., a minimally conscious state and vegetative state/unresponsive wakefulness syndrome) when engaged in passive sensory stimulation or active tasks [...] Read more.
Brain imaging studies have recently provided some evidence in favor of covert cognitive processes that are ongoing in patients with disorders of consciousness (DoC) (e.g., a minimally conscious state and vegetative state/unresponsive wakefulness syndrome) when engaged in passive sensory stimulation or active tasks such as motor imagery. In this exploratory study, we used transcranial magnetic stimulation (TMS) of the motor cortex to assess modulations of corticospinal excitability induced by action observation in eleven patients with DoC. Action observation is known to facilitate corticospinal excitability in healthy subjects, unveiling how the observer’s motor system maps others’ actions onto her/his motor repertoire. Additional stimuli were non-biological motion and acoustic startle stimuli, considering that sudden and loud acoustic stimulation is known to lower corticospinal excitability in healthy subjects. The results indicate that some form of motor resonance is spared in a subset of patients with DoC, with some significant difference between biological and non-biological motion stimuli. However, there was no covariation between corticospinal excitability and the type of DoC diagnosis (i.e., whether diagnosed with VS/UWS or MCS). Similarly, no covariation was detected with clinical changes between admission and discharge in clinical outcome measures. Both motor resonance and the difference between the resonance with biological/non-biological motion discrimination correlated with the amplitude of the N20 somatosensory evoked potentials, following the stimulation of the median nerve at the wrist (i.e., the temporal marker signaling the activation of the contralateral primary somatosensory cortex). Moreover, the startle-evoking stimulus produced an anomalous increase in corticospinal excitability, suggesting a functional dissociation between cortical and subcortical circuits in patients with DoC. Further work is needed to better comprehend the conditions in which corticospinal facilitation occurs and whether and how they may relate to individual clinical parameters. Full article
(This article belongs to the Special Issue State of the Art in Disorders of Consciousness)
Show Figures

Figure 1

22 pages, 1227 KiB  
Article
The Complex Role of Botulinum Toxin in Enhancing Goal Achievement for Post-Stroke Patients
by Miruna Ioana Săndulescu, Delia Cinteză, Daniela Poenaru, Claudia-Gabriela Potcovaru, Horia Păunescu and Oana Andreia Coman
Toxins 2024, 16(4), 172; https://doi.org/10.3390/toxins16040172 - 31 Mar 2024
Cited by 4 | Viewed by 2619
Abstract
Introduction. The rehabilitation medical team is responsible for the therapeutic management of post-stroke patients and, therefore, for the complex therapeutic approach of spasticity. Considering the generous arsenal at our disposal in terms of both pharmacological treatment, through the possibility of administering botulinum toxin [...] Read more.
Introduction. The rehabilitation medical team is responsible for the therapeutic management of post-stroke patients and, therefore, for the complex therapeutic approach of spasticity. Considering the generous arsenal at our disposal in terms of both pharmacological treatment, through the possibility of administering botulinum toxin to combat spasticity, and in terms of accurate assessment through developed functional scales such as the GAS (Goal Attainment Scale), one of our purposes is to monitor the parameters that influence the achievement of functional goals set by patients together with the medical team in order to render the patients as close as possible to achieving their proposed functional goals, thus enhancing their quality of life. By assessing and establishing statistical and clinical correlations between the GAS and quantifiable parameters related to the affected post-stroke upper limb, namely degree of spasticity, motor control, pain level and evolution of pain under treatment with BoNT-A (abobotulinum toxin A), and patients’ overall response to BoNT-A treatment, we aim to quantify the improvement of the therapeutic management of post-stroke patients with spasticity and develop a more personalized and effective approach to their disability and impairment. Results and discussions. The analysis concluded that there were two independent predictors of the Achieved GAS-T score (the study’s endpoint parameter) motor control at any level of the upper limb and number of prior BoNT-A injections. The number of prior BoNT-A injections was an independent predictor of Achieved GAS-T score improvement but had no significant influence over Baseline GAS-T score. Enhancement in proximal and intermediate motor control showed a GAS score improvement of 3.3 points and a 0.93-point GAS score improvement for wrist motor control progress. From a separate viewpoint, patients with motor deficit on the left side have shown significantly greater improvement in Changed GAS-T scores by 2.5 points compared to patients with deficits on the right side; however, we note as a study limitation the fact that there was no statistical analysis over the dominant cerebral hemisphere of each patient. Conclusions. Improvement in the Achieved GAS-T score means better achievement of patients’ goals. Thus, after the BoNT- A intervention, at follow-up evaluation, GAS was found to be directly correlated with improvement in motor control of the affected upper limb. Mobility of the corresponding limb was enhanced by pain decrease during p-ROM (passive range of motion) and by amelioration of spasticity. Materials and Methods. We conducted an observational, non-randomized clinical study on 52 stroke patients, a representative sample of patients with post-stroke spasticity and disability from our neurological rehabilitation clinic, who have been treated and undergone a specific rehabilitation program in our tertiary diagnostic and treatment medical center, including BoNT-A focal treatment for spasticity in the affected upper limb. The primary objective of the study was to assess the influence of abobotulinum toxin A treatment on the Goal Attainment Scale. Secondary objectives of the study included the assessment of BoNT-A treatment efficacy on spasticity with the MAS (Modified Ashworth Scale), pain with the NRS (Numerical Rating Scale), and joint passive range of motion (p-ROM), identifying demographic, clinical, and pharmacological factors that influence the response to BoNT-A treatment, as well as to conduct a descriptive and exploratory analysis of the studied variables. Full article
(This article belongs to the Special Issue Application of Botulinum Toxins in Diseases Treatment)
Show Figures

Figure 1

14 pages, 1984 KiB  
Review
Overview of Cochrane Systematic Reviews for Rehabilitation Interventions in Individuals with Upper Limb Fractures: A Mapping Synthesis
by Sara Liguori, Antimo Moretti, Giuseppe Toro, Chiara Arienti, Michele Patrini, Carlotte Kiekens, Stefano Negrini, Giovanni Iolascon and Francesca Gimigliano
Medicina 2024, 60(3), 469; https://doi.org/10.3390/medicina60030469 - 12 Mar 2024
Cited by 1 | Viewed by 3476
Abstract
Background and Objectives. This overview of Cochrane systematic reviews (CSRs) reports on current evidence on the effectiveness of rehabilitation interventions for persons with upper limb fractures (ULFs), and the quality of the evidence. Materials and Methods. Following the inclusion criteria defined [...] Read more.
Background and Objectives. This overview of Cochrane systematic reviews (CSRs) reports on current evidence on the effectiveness of rehabilitation interventions for persons with upper limb fractures (ULFs), and the quality of the evidence. Materials and Methods. Following the inclusion criteria defined by the World Health Organization, all CSRs tagged in the Cochrane Rehabilitation database that were relevant for persons with ULFs were included. A mapping synthesis was used to group outcomes and comparisons of included CSRs, indicating the effect of rehabilitation interventions and the certainty of evidence. Results. A total of three CSRs were included in the evidence map. The certainty of evidence was judged as low to very low. Early occupational and hand therapy, cyclic pneumatic soft tissue compression, and cross-education, when started during immobilization, may improve grip strength and wrist range of motion, with results maintained up to 12 weeks from the cast removal, compared to no intervention. Approaches such as occupational therapy and passive mobilisation, started post-immobilization, are probably safe in terms of secondary complications. However, the overall evidence of rehabilitative interventions related to proximal humeral fractures has been judged insufficient for all the outcomes considered. A paucity of primary studies and CSRs for elbow fractures was noted. Conclusions. This overview provided the effect and the certainty of evidence of rehabilitation interventions available after ULFs using a mapping synthesis. To date, there is a need to further the effectiveness and safety of these interventions for persons with ULFs, improving methodological quality of the research in the field. Full article
Show Figures

Figure 1

18 pages, 12793 KiB  
Article
Design and Analysis of VARONE a Novel Passive Upper-Limb Exercising Device
by Luis Daniel Filomeno Amador, Eduardo Castillo Castañeda, Med Amine Laribi and Giuseppe Carbone
Robotics 2024, 13(2), 29; https://doi.org/10.3390/robotics13020029 - 8 Feb 2024
Cited by 3 | Viewed by 2719
Abstract
Robots have been widely investigated for active and passive rehabilitation therapy of patients with upper limb disabilities. Nevertheless, the rehabilitation assessment process is often ignored or just qualitatively performed by the physiotherapist implementing chart-based ordinal scales or observation-based measures, which tend to rely [...] Read more.
Robots have been widely investigated for active and passive rehabilitation therapy of patients with upper limb disabilities. Nevertheless, the rehabilitation assessment process is often ignored or just qualitatively performed by the physiotherapist implementing chart-based ordinal scales or observation-based measures, which tend to rely on professional experience and lack quantitative analysis. In order to objectively quantify the upper limb rehabilitation progress, this paper presents a noVel pAssive wRist motiOn assessmeNt dEvice (VARONE) having three degrees of freedom (DoFs) based on the gimbal mechanical design. VARONE implements a mechanism of three revolute passive joints with controllable passive resistance. An inertial measurement unit (IMU) sensor is used to quantify the wrist orientation and position, and an encoder module is implemented to obtain the arm positions. The proposed VARONE device can also be used in combination with the previously designed two-DoFs device NURSE (cassiNo-qUeretaro uppeR limb aSsistive dEvice) to perform multiple concurrent assessments and rehabilitation tasks. Analyses and experimental tests have been carried out to demonstrate the engineering feasibility of the intended applications of VARONE. The maximum value registered for the IMU sensor is 36.8 degrees, the minimum value registered is −32.3 degrees, and the torque range registered is around −80 and 80 Nmm. The implemented models include kinematics, statics (F.E.M.), and dynamics. Thirty healthy patients participated in an experimental validation. The experimental tests were developed with different goal-defined exercising paths that the participant had to follow. Full article
Show Figures

Figure 1

44 pages, 14989 KiB  
Review
State of the Art in Wearable Wrist Exoskeletons Part II: A Review of Commercial and Research Devices
by Roberto Francesco Pitzalis, Daegeun Park, Darwin G. Caldwell, Giovanni Berselli and Jesús Ortiz
Machines 2024, 12(1), 21; https://doi.org/10.3390/machines12010021 - 29 Dec 2023
Cited by 8 | Viewed by 4563
Abstract
Manual handling tasks, both in daily activities and at work, require high dexterity and the ability to move objects of different shapes and sizes. However, musculoskeletal disorders that can arise due to aging, disabilities, overloading, or strenuous work can impact the natural capabilities [...] Read more.
Manual handling tasks, both in daily activities and at work, require high dexterity and the ability to move objects of different shapes and sizes. However, musculoskeletal disorders that can arise due to aging, disabilities, overloading, or strenuous work can impact the natural capabilities of the hand with serious repercussions both in working and daily activities. To address this, researchers have been developing and proving the benefits of wrist exoskeletons. This paper, which is Part II of a study on wrist exoskeletons, presents and summarizes wearable wrist exoskeleton devices intended for use in rehabilitation, assistance, and occupational fields. Exoskeletons considered within the study are those available either in a prototyping phase or on the market. These devices can support the human wrist by relieving pain or mitigating fatigue while allowing for at least one movement. Most of them have been designed to be active (80%) for higher force/torque transmission, and soft for better kinematic compliance, ergonomics, and safety (13 devices out of 24, more than 50%). Electric motors and cable transmission (respectively 11 and 9 devices, out of 24, i.e., almost 50% and 40%) are the most common due to their simplicity, controllability, safety, power-to-weight ratio, and the possibility of remote actuation. As sensing technologies, position and force sensors are widely used in all devices (almost 90%). The control strategy depends mainly on the application domain: for rehabilitation, CPM (control passive motion) is preferred (35% of devices), while for assistance and occupational purposes, AAN (assistance-as-needed) is more suitable (38% of the devices). What emerges from this analysis is that, while rehabilitation and training are fields in which exoskeletons have grown more easily and gained some user acceptance (almost 18 devices, of which 4 are available on the market), relatively few devices have been designed for occupational purposes (5, with only 2 available on the market) due to difficulties in meeting the acceptance and needs of users. In this perspective, as a result of the state-of-the-art analysis, the authors propose a conceptual idea for a portable soft wrist exoskeleton for occupational assistance. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

17 pages, 1896 KiB  
Article
Biomechanical Insights for Developing Evidence-Based Training Programs: Unveiling the Kinematic Secrets of the Overhead Forehand Smash in Badminton through Novice-Skilled Player Comparison
by Fulin Li, Shiming Li, Xiang Zhang and Gongbing Shan
Appl. Sci. 2023, 13(22), 12488; https://doi.org/10.3390/app132212488 - 19 Nov 2023
Cited by 9 | Viewed by 8882
Abstract
Badminton, a dynamic racquet sport demanding agility and power, features the overhead forehand smash as a pivotal offensive shot. Utilizing 3D motion analysis, this research delves into the intricate biomechanical facets underpinning this pivotal shot, with a dual focus on both novice and [...] Read more.
Badminton, a dynamic racquet sport demanding agility and power, features the overhead forehand smash as a pivotal offensive shot. Utilizing 3D motion analysis, this research delves into the intricate biomechanical facets underpinning this pivotal shot, with a dual focus on both novice and proficient players. Through a comparative analysis of these two player cohorts, the investigation aims to elucidate the fundamental factors influencing the quality of the forehand smash. Our findings reveal that skilled players exhibit significant improvements in smash quality, including a 60.2% increase in shuttlecock speed, reduced clearance height, and flight angle at release. These enhancements are associated with specific determinants, such as consistent positioning, racket angle at impact, and range of motion (ROM) in various joints. More crucially, full-body tension-arc formation and a four-segment whip-like smash contribute to these improvements. Unique to the whip-like smash is the rapid trunk and shoulder rotations in early whip-like control inducing passive elbow flexion and wrist over-extension, enhancing the stretch-shortening cycle (SSC) effect of muscles for a more powerful smash. Emphasizing this uniqueness and the determinants simplify smash learning, potentially boosting training effectiveness. This research contributes to a deeper understanding of badminton’s biomechanics and offers practical implications for coaches and players to enhance their forehand smashes, especially among beginners. Full article
(This article belongs to the Special Issue Performance Analysis in Sport and Exercise Ⅱ)
Show Figures

Figure 1

10 pages, 2760 KiB  
Review
Adhesive Capsulitis of the Ankle (Frozen Ankle): An Infrequent Syndrome
by Daniel Aguilar-Núñez, Dina Hamed-Hamed, María Aguilar-García, María Cuevas-Cervera, José Javier Pérez-Montilla, Ana González-Muñoz, Leo Pruimboom and Santiago Navarro-Ledesma
Biomedicines 2023, 11(9), 2461; https://doi.org/10.3390/biomedicines11092461 - 5 Sep 2023
Cited by 1 | Viewed by 3154
Abstract
Adhesive capsulitis, characterized by progressive fibrosis, causes a gradual, painful loss of both active and passive articular motion, leading to the final contracture of the joint capsule. The condition commonly referred to as “frozen ankle” (FA), which Goldman was the first to use, [...] Read more.
Adhesive capsulitis, characterized by progressive fibrosis, causes a gradual, painful loss of both active and passive articular motion, leading to the final contracture of the joint capsule. The condition commonly referred to as “frozen ankle” (FA), which Goldman was the first to use, relates to the ankle joint and is challenging to both diagnose and treat. Data acquired from people who suffer from this type of damage in other joints such as the shoulder, hip, and wrist also exists. Despite the fact that a well-defined model for the medical management of FA does not exist, a wide spectrum of local treatments, both surgical and non-surgical, exist. This review gives an overview of the current scientific position of the frozen ankle in terms of evolutionary factors, etiology, the different mechanisms of action involved, current treatment options, and other possible interventions based on recent discoveries of pathophysiological mechanisms. The application of extracorporeal shockwave therapy, stretching exercises, and corticosteroid injections combined with physical therapy modalities that enhance pain management, range of motion, and functional capacity is highly advisable for the treatment of adhesive capsulitis, commonly known as “frozen joints”. Furthermore, the addition of interventions both impacting and analyzing chronic hypoxia, low-grade inflammation, and sedentary life is proposed. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

13 pages, 1839 KiB  
Article
Development and Trial of a Multipurpose Customized Orthosis for Activities of Daily Living in Patients with Spinal Cord Injury
by Komal Chhikara, Shubham Gupta, Dhruv Bose, Chitra Kataria and Arnab Chanda
Prosthesis 2023, 5(2), 467-479; https://doi.org/10.3390/prosthesis5020032 - 16 May 2023
Cited by 20 | Viewed by 4125
Abstract
People with mid-cervical spinal cord injury (SCI) often have difficulty in performing activities of daily living due to weakness or paralysis in the flexor muscles. The inability to perform activities requiring fine motor control, such as eating, brushing, writing, unlocking doors, etc., affects [...] Read more.
People with mid-cervical spinal cord injury (SCI) often have difficulty in performing activities of daily living due to weakness or paralysis in the flexor muscles. The inability to perform activities requiring fine motor control, such as eating, brushing, writing, unlocking doors, etc., affects overall quality of life negatively. To perform such tasks, appropriate movement of the hands, specifically at the wrist, is essential. For SCI patients, wrist orthotics are considered a viable option with which to perform general tasks. Wrist orthotics, used for rehabilitating people with SCI, help to maintain proper wrist and hand positioning; however, patients must frequently change these orthotic devices as per separate activity requirements. This becomes difficult and cumbersome for such patients. In this work, a passive 3D-printed upper-extremity dynamic orthosis was developed to assist SCI patients in their activities of daily living. The orthosis works on the principle of a worm-gear-based mechanism to produce pronation/supination motions at the wrist. To test the developed multipurpose customized orthosis, ten patients with cervical SCI were recruited and prescribed the 3D-printed splint for a period of four weeks. It was assessed through the QUEST questionnaire and a task completion assessment for its performance. The developed multipurpose customized orthotic device was found to provide an appropriate range of motion, ease in performing tasks, and took less time to complete tasks compared to previous works. The results indicated satisfactory performance, thereby improving quality of life. The multipurpose customized orthotic device successfully assisted the subjects with their daily activities, thus making them more independent in their rehabilitative period. Full article
Show Figures

Figure 1

5 pages, 1544 KiB  
Interesting Images
Dynamic Ultrasound Examination for Extensor Pollicis Longus Tendon Rupture after Palpation-Guided Corticosteroid Injection
by Ying-Chun Chen, Wei-Ting Wu, Kamal Mezian, Vincenzo Ricci, Levent Özçakar and Ke-Vin Chang
Diagnostics 2023, 13(5), 959; https://doi.org/10.3390/diagnostics13050959 - 3 Mar 2023
Cited by 3 | Viewed by 5328
Abstract
This report aimed to present a case of wrist-tendon rupture and to discuss a rare complication after corticosteroid injection. A 67-year-old woman had difficulty extending her left-thumb interphalangeal joint several weeks after a palpation-guided local corticosteroid injection. Passive motions remained intact without sensory [...] Read more.
This report aimed to present a case of wrist-tendon rupture and to discuss a rare complication after corticosteroid injection. A 67-year-old woman had difficulty extending her left-thumb interphalangeal joint several weeks after a palpation-guided local corticosteroid injection. Passive motions remained intact without sensory abnormalities. Ultrasound examination showed hyperechoic tissues at the site of the extensor pollicis longus (EPL) tendon at the wrist level and an atrophic EPL muscle stump at the forearm level. Dynamic imaging demonstrated no motion in the EPL muscle during passive thumb flexion/extension. The diagnosis of complete EPL rupture, possibly due to inadvertent intratendinous corticosteroid injection, was therefore confirmed. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

27 pages, 7951 KiB  
Article
Lightweight Bioinspired Exoskeleton for Wrist Rehabilitation Powered by Twisted and Coiled Artificial Muscles
by Carlo Greco, Thilina H. Weerakkody, Venanzio Cichella, Leonardo Pagnotta and Caterina Lamuta
Robotics 2023, 12(1), 27; https://doi.org/10.3390/robotics12010027 - 10 Feb 2023
Cited by 14 | Viewed by 5558
Abstract
Stroke, cerebral palsy, and spinal cord injuries represent the most common leading causes of upper limb impairment. In recent years, rehabilitation robotics has progressed toward developing wearable technologies to promote the portability of assistive devices and to enable home rehabilitation of the upper [...] Read more.
Stroke, cerebral palsy, and spinal cord injuries represent the most common leading causes of upper limb impairment. In recent years, rehabilitation robotics has progressed toward developing wearable technologies to promote the portability of assistive devices and to enable home rehabilitation of the upper extremities. However, current wearable technologies mainly rely on electric motors and rigid links or soft pneumatic actuators and are usually bulky and cumbersome. To overcome the limitations of existing technologies, in this paper, a first prototype of a lightweight, ungrounded, soft exoskeleton for wrist rehabilitation powered by soft and flexible carbon fibers-based twisted and coiled artificial muscles (TCAMs) is proposed. The device, which weighs only 0.135 kg, emulates the arrangement and working mechanism of skeletal muscles in the upper extremities and is able to perform wrist flexion/extension and ulnar/radial deviation. The range of motion and the force provided by the exoskeleton is designed through simple kinematic and dynamic theoretical models, while a thermal model is used to design a thermal insulation system for TCAMs during actuation. The device’s ability to perform passive and active-resisted wrist rehabilitation exercises and EMG-based actuation is also demonstrated. Full article
Show Figures

Figure 1

22 pages, 6159 KiB  
Article
A New Wrist–Forearm Rehabilitation Protocol Integrating Human Biomechanics and SVM-Based Machine Learning for Muscle Fatigue Estimation
by Yassine Bouteraa, Ismail Ben Abdallah and Khalil Boukthir
Bioengineering 2023, 10(2), 219; https://doi.org/10.3390/bioengineering10020219 - 6 Feb 2023
Cited by 17 | Viewed by 7018
Abstract
In this research, a new remote rehabilitation system was developed that integrates an IoT-based connected robot intended for wrist and forearm rehabilitation. In fact, the mathematical model of the wrist and forearm joints was developed and integrated into the main controller. The proposed [...] Read more.
In this research, a new remote rehabilitation system was developed that integrates an IoT-based connected robot intended for wrist and forearm rehabilitation. In fact, the mathematical model of the wrist and forearm joints was developed and integrated into the main controller. The proposed new rehabilitation protocol consists of three main sessions: the first is dedicated to the extraction of the passive components of the dynamic model of wrist–forearm biomechanics while the active components are extracted in the second session. The third session consists of performing continuous exercises using the determined dynamic model of the forearm–wrist joints, taking into account the torque generated by muscle fatigue. The main objective of this protocol is to determine the state level of the affected wrist and above all to provide a dynamic model in which the torque generated by the robot and the torque supplied by the patient are combined, taking into account the constraints of fatigue. A Support Vector Machine (SVM) classifier is designed for the estimation of muscle fatigue based on the features extracted from the electromyography (EMG) signal acquired from the patient. The results show that the developed rehabilitation system allows a good progression of the joint’s range of motion as well as the resistive-active torques. Full article
Show Figures

Figure 1

17 pages, 1770 KiB  
Article
The Efficacity of the NeuroAssist Robotic System for Motor Rehabilitation of the Upper Limb—Promising Results from a Pilot Study
by Nicoleta Tohanean, Paul Tucan, Oana-Maria Vanta, Cristian Abrudan, Sebastian Pintea, Bogdan Gherman, Alin Burz, Alexandru Banica, Calin Vaida, Deborah Alice Neguran, Andreea Ordog, Daniela Tarnita and Doina Pisla
J. Clin. Med. 2023, 12(2), 425; https://doi.org/10.3390/jcm12020425 - 4 Jan 2023
Cited by 18 | Viewed by 3451
Abstract
The research aimed to evaluate the efficacy of the NeuroAssist, a parallel robotic system comprised of three robotic modules equipped with human–robot interaction capabilities, an internal sensor system for torque monitoring, and an external sensor system for real-time patient monitoring for the motor [...] Read more.
The research aimed to evaluate the efficacy of the NeuroAssist, a parallel robotic system comprised of three robotic modules equipped with human–robot interaction capabilities, an internal sensor system for torque monitoring, and an external sensor system for real-time patient monitoring for the motor rehabilitation of the shoulder, elbow, and wrist. The study enrolled 10 consecutive patients with right upper limb paresis caused by stroke, traumatic spinal cord disease, or multiple sclerosis admitted to the Neurology I Department of Cluj-Napoca Emergency County Hospital. The patients were evaluated clinically and electrophysiologically before (T1) and after the intervention (T2). The intervention consisted of five consecutive daily sessions of 30–45 min each of 30 passive repetitive movements performed with the robot. There were significant differences (Wilcoxon signed-rank test) between baseline and end-point clinical parameters, specifically for the Barthel Index (53.00 ± 37.72 vs. 60.50 ± 36.39, p = 0.016) and Activities of Daily Living Index (4.70 ± 3.43 vs. 5.50 ± 3.80, p = 0.038). The goniometric parameters improved: shoulder flexion (70.00 ± 56.61 vs. 80.00 ± 63.59, p = 0.026); wrist flexion/extension (34.00 ± 28.75 vs. 42.50 ± 33.7, p = 0.042)/(30.00 ± 22.97 vs. 41.00 ± 30.62, p = 0.042); ulnar deviation (23.50 ± 19.44 vs. 33.50 ± 24.15, p = 0.027); and radial deviation (17.50 ± 18.14 vs. 27.00 ± 24.85, p = 0.027). There was a difference in muscle activation of the extensor digitorum communis muscle (1.00 ± 0.94 vs. 1.40 ± 1.17, p = 0.046). The optimized and dependable NeuroAssist Robotic System improved shoulder and wrist range of motion and functional scores, regardless of the cause of the motor deficit. However, further investigations are necessary to establish its definite role in motor recovery. Full article
Show Figures

Figure 1

Back to TopTop