Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = paraffin valve

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1039 KB  
Article
MicroRNA Expression Profiling in Canine Myxomatous Mitral Valve Disease Highlights Potential Diagnostic Tool and Molecular Pathways
by Gabriella Guelfi, Noemi Santarelli, Camilla Capaccia, Federica Valeri, Domenico Caivano and Elvio Lepri
Vet. Sci. 2025, 12(11), 1029; https://doi.org/10.3390/vetsci12111029 - 23 Oct 2025
Cited by 1 | Viewed by 737
Abstract
Myxomatous mitral valve disease (MMVD) is the most common acquired cardiac disoder in dogs and a relevant model for human mitral valve disease. However, the molecular drivers of disease progression remain unclear, and reliable biomarkers for early diagnosis still hamper clinical management. This [...] Read more.
Myxomatous mitral valve disease (MMVD) is the most common acquired cardiac disoder in dogs and a relevant model for human mitral valve disease. However, the molecular drivers of disease progression remain unclear, and reliable biomarkers for early diagnosis still hamper clinical management. This study investigated microRNA (miRNA) expression directly in histologically characterized mitral valve tissues. Formalin-fixed paraffin-embedded samples were obtained from control dogs (n = 7), low-grade MMVD (n = 8), and high-grade MMVD (n = 5). A bioinformatics workflow identified candidate miRNAs converging on extracellular matrix remodeling and canonical signaling pathways, including TGF-β, PI3K–Akt, and MAPK. Selected candidates, let-7 family, miR-98, miR-21, miR-30b, miR-133b, and miR-103, were validated by qPCR. Results revealed a general upregulation of the panel in MMVD compared with controls, with stage-dependent differences between low- and high-grade lesions. In particular, miR-21, let-7b, and miR-133b were markedly increased in advanced disease, while miR-30b emerged as an early-stage marker with potential prognostic value. These findings provide molecular evidence linking miRNA dysregulation to progressive valvular degeneration. By combining histologically defined tissue analysis with stage-based comparisons, this study identifies miRNAs with potential diagnostic and prognostic utility for canine MMVD. Full article
Show Figures

Figure 1

22 pages, 6823 KB  
Article
Design Optimization of Valve Assemblies in Downhole Rod Pumps to Enhance Operational Reliability in Oil Production
by Seitzhan Zaurbekov, Kadyrzhan Zaurbekov, Doszhan Balgayev, Galina Boiko, Ertis Aksholakov, Roman V. Klyuev and Nikita V. Martyushev
Energies 2025, 18(15), 3976; https://doi.org/10.3390/en18153976 - 25 Jul 2025
Viewed by 819
Abstract
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, [...] Read more.
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, i.e., a problem that accounts for approximately 15% of all failures, as identified in a statistical analysis of the 2022 operational data from the Uzen oilfield in Kazakhstan. The leakage is primarily attributed to the accumulation of mechanical impurities and paraffin deposits between the valve ball and seat, leading to concentrated surface wear and compromised sealing. To mitigate this issue, a novel valve assembly design was developed featuring a flow turbulizer positioned beneath the valve seat. The turbulizer generates controlled vortex motion in the fluid flow, which increases the rotational frequency of the valve ball during operation. This motion promotes more uniform wear across the contact surfaces and reduces the risk of localized degradation. The turbulizers were manufactured using additive FDM technology, and several design variants were tested in a full-scale laboratory setup simulating downhole conditions. Experimental results revealed that the most effective configuration was a spiral plate turbulizer with a 7.5 mm width, installed without axis deviation from the vertical, which achieved the highest ball rotation frequency and enhanced lapping effect between the ball and the seat. Subsequent field trials using valves with duralumin-based turbulizers demonstrated increased operational lifespans compared to standard valves, confirming the viability of the proposed solution. However, cases of abrasive wear were observed under conditions of high mechanical impurity concentration, indicating the need for more durable materials. To address this, the study recommends transitioning to 316 L stainless steel for turbulizer fabrication due to its superior tensile strength, corrosion resistance, and wear resistance. Implementing this design improvement can significantly reduce maintenance intervals, improve pump reliability, and lower operating costs in mature oilfields with high water cut and solid content. The findings of this research contribute to the broader efforts in petroleum engineering to enhance the longevity and performance of artificial lift systems through targeted mechanical design improvements and material innovation. Full article
(This article belongs to the Special Issue Petroleum and Natural Gas Engineering)
Show Figures

Figure 1

16 pages, 6549 KB  
Article
Integrated High-Throughput Centrifugal Microfluidic Chip Device for Pathogen Detection On-Site
by Shuyu Lu, Yuanzhan Yang, Siqi Cui, Anyi Li, Cheng Qian and Xiaoqiong Li
Biosensors 2024, 14(6), 313; https://doi.org/10.3390/bios14060313 - 19 Jun 2024
Cited by 9 | Viewed by 3339
Abstract
An integrated and high-throughput device for pathogen detection is crucial in point-of-care testing (POCT), especially for early diagnosis of infectious diseases and preventing the spread of infection. We developed an on-site testing platform that utilizes a centrifugal microfluidic chip and automated device to [...] Read more.
An integrated and high-throughput device for pathogen detection is crucial in point-of-care testing (POCT), especially for early diagnosis of infectious diseases and preventing the spread of infection. We developed an on-site testing platform that utilizes a centrifugal microfluidic chip and automated device to achieve high-throughput detection. The low-power (<32 W), portable (220 mm × 220 mm × 170 mm, 4 kg) device can complete bacterial lysis, nucleic acid extraction and purification, loop-mediated isothermal amplification (LAMP) reaction, and real-time fluorescence detection. Magnetic beads for nucleic acid adsorption can be mixed by applying electromagnetic fields and centrifugal forces, and the efficiency of nucleic acid extraction is improved by 60% compared to the no-mixing group. The automated nucleic acid extraction process achieves equivalent nucleic acid extraction efficiency in only 40% of the time consumed using the kit protocol. By designing the valve system and disc layout, the maximum speed required for the centrifugal microfluidic chip is reduced to 1500 rpm, greatly reducing the equipment power consumption and size. In detecting E. coli, our platform achieves a limit of detection (LOD) of 102 CFU/mL in 60 min. In summary, our active centrifugal microfluidic platform provides a solution for the integration of complex biological assays on turntables, with great potential in the application of point-of-care diagnosis. Full article
(This article belongs to the Special Issue Biosensing Technologies in Medical Diagnosis)
Show Figures

Figure 1

15 pages, 3175 KB  
Article
Metataxonomic and Histopathological Study of Rabbit Epizootic Enteropathy in Mexico
by Xiao-Haitzi Daniel Puón-Peláez, Neil Ross McEwan, José Guadalupe Gómez-Soto, Roberto Carlos Álvarez-Martínez and Andrea Margarita Olvera-Ramírez
Animals 2020, 10(6), 936; https://doi.org/10.3390/ani10060936 - 28 May 2020
Cited by 12 | Viewed by 7247
Abstract
Epizootic rabbit enteropathy (ERE) affects young rabbits and represents 32% of the enteropathies in rabbit production farms in Mexico. The etiology of this syndrome has not been clarified yet. A metataxonomic and histopathology study of ERE was carried out to compare the gastrointestinal [...] Read more.
Epizootic rabbit enteropathy (ERE) affects young rabbits and represents 32% of the enteropathies in rabbit production farms in Mexico. The etiology of this syndrome has not been clarified yet. A metataxonomic and histopathology study of ERE was carried out to compare the gastrointestinal microbiota and histopathological lesions of healthy and positive-ERE rabbits. The metataxonomic study was done using an Illumina MiSeq (MiSeq® system, Illumina, San Diego California, USA) massive segmentation platform, and a Divisive Amplicon Denoising Algorithm 2 (DADA2 algorithm) was used to obtain Shannon and Simpson diversity indices as well as the relative abundance of the identified communities. For the histopathological study, paraffin sections of the cecum, ileo-cecal valve, and colon were stained with eosin and hematoxylin. AxioVision 4.9 software (Carl Zeiss MicroImaging GmbH, Jena, Germany) was used to measure the crypt depths. Statistical analysis was done using PERMANOVA analysis for the metataxonomic study and ANOVA for the histopathology study. Histopathologic analysis showed smaller sizes of crypts in the colon of ERE rabbits. Differences were observed in the diversity and abundance of the gastrointestinal microbiota between the analyzed groups. The genus Clostridium and the species Cloacibacillus porcorum and Akkermansia muciniphila were associated with ERE. The results obtained from this study can provide information for future clarification of the etiology and proposals of effective treatments. Full article
(This article belongs to the Collection Veterinary Microbiology in Farm Animals)
Show Figures

Figure 1

13 pages, 1793 KB  
Article
Bicuspid Aortic Valve Alters Aortic Protein Expression Profile in Neonatal Coarctation Patients
by Katie L. Skeffington, Andrew R. Bond, Safa Abdul-Ghani, Dominga Iacobazzi, Sok-Leng Kang, Kate J. Heesom, Marieangela C. Wilson, Mohamed Ghorbel, Serban Stoica, Robin Martin, M. Saadeh Suleiman and Massimo Caputo
J. Clin. Med. 2019, 8(4), 517; https://doi.org/10.3390/jcm8040517 - 16 Apr 2019
Cited by 5 | Viewed by 3641
Abstract
Coarctation of the aorta is a form of left ventricular outflow tract obstruction in paediatric patients that can be presented with either bicuspid (BAV) or normal tricuspid (TAV) aortic valve. The congenital BAV is associated with hemodynamic changes and can therefore trigger different [...] Read more.
Coarctation of the aorta is a form of left ventricular outflow tract obstruction in paediatric patients that can be presented with either bicuspid (BAV) or normal tricuspid (TAV) aortic valve. The congenital BAV is associated with hemodynamic changes and can therefore trigger different molecular remodelling in the coarctation area. This study investigated the proteomic and phosphoproteomic changes associated with BAV for the first time in neonatal coarctation patients. Aortic tissue was collected just proximal to the coarctation site from 23 neonates (BAV; n = 10, TAV; n = 13) that were matched for age (age range 4–22 days). Tissue from half of the patients was frozen and used for proteomic and phosphoproteomic analysis whilst the remaining tissue was formalin fixed and used for analysis of elastin content using Elastic Van-Gieson (EVG) staining. A total of 1796 protein and 75 phosphoprotein accession numbers were detected, of which 34 proteins and one phosphoprotein (SSH3) were differentially expressed in BAV patients compared to TAV patients. Ingenuity Pathway Analysis identified the formation of elastin fibres as a significantly enriched function (p = 1.12 × 10−4) due to the upregulation of EMILIN-1 and the downregulation of TNXB. Analysis of paraffin sections stained with EVG demonstrated increased elastin content in BAV patients. The proteomic/phosphoproteomic analysis also suggested changes in inositol signalling pathways and reduced expression of the antioxidant SOD3. This work demonstrates for the first time that coarcted aortic tissue in neonatal BAV patients has an altered proteome/phosphoproteome consistent with observed structural vascular changes when compared to TAV patients. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

Back to TopTop