Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = pappalysins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 15205 KiB  
Article
N6-Methyladenosine (m6A)-Circular RNA Pappalysin 1 (circPAPPA) from Cashmere Goats: Identification, Regulatory Network and Expression Potentially Regulated by Methylation in Secondary Hair Follicles Within the First Intron of Its Host Gene
by Man Bai, Jincheng Shen, Yixing Fan, Ruqing Xu, Taiyu Hui, Yubo Zhu, Qi Zhang, Jialiang Zhang, Zeying Wang and Wenlin Bai
Animals 2025, 15(4), 581; https://doi.org/10.3390/ani15040581 - 18 Feb 2025
Viewed by 551
Abstract
N6-methyladenosine (m6A) is one of the most abundant modifications in eukaryotic RNA molecules and mediates the functional exertion of RNA molecules. We characterized the circPAPPA and validated its potential m6A modification sites in secondary hair follicles (SHFs) [...] Read more.
N6-methyladenosine (m6A) is one of the most abundant modifications in eukaryotic RNA molecules and mediates the functional exertion of RNA molecules. We characterized the circPAPPA and validated its potential m6A modification sites in secondary hair follicles (SHFs) of cashmere goats. Furthermore, we generated integrated regulatory networks of the circPAPPA along with enrichment analysis of signaling pathways. We also explored the potential relationship of circPAPPA expression with the first intron methylation of the PAPPA gene in SHFs of cashmere goats. Host source analysis revealed that circPAPPA is derived from the complete exon 2 of the PAPPA gene, spliced in reverse orientation, and predominantly localized in the cytoplasm of SHF stem cells in cashmere goats. The circPAPPA was verified to contain at least four m6A modification sites in SHFs of cashmere goats, including m6A-450/456, m6A-852, m6A-900, and m6A-963. The generated regulatory network indicated complex and diverse regulatory relationships of m6A-circPAPPA with its putative regulatory molecules, including miRNAs, mRNAs, and proteins. Enrichment analysis of signaling pathways showed that m6A-circPAPPA might play multiple functional roles in the growth and development of SHF in cashmere goats through the putative regulatory network mediated by its target miRNAs and regulatory proteins. The first intron methylation of the PAPPA gene most likely is significantly involved in the dynamic expression of m6A-circPAPPA in cashmere goat SHFs. Results from this study provided novel information to elucidate the biological roles and functional regulatory pathways of m6A-circPAPPA in SHF development and the growth of cashmere goat fiber. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

20 pages, 6959 KiB  
Article
Dissecting Cytophagalysin: Structural and Biochemical Studies of a Bacterial Pappalysin-Family Metallopeptidase
by Eva Estevan-Morió, Juan Sebastián Ramírez-Larrota, Enkela Bushi and Ulrich Eckhard
Biomolecules 2024, 14(12), 1604; https://doi.org/10.3390/biom14121604 - 16 Dec 2024
Viewed by 1228
Abstract
Cytophaga is a genus of Gram-negative bacteria occurring in soil and the gut microbiome. It is closely related to pathogenic Flavobacterium spp. that cause severe diseases in fish. Cytophaga strain L43-1 secretes cytophagalysin (CPL1), a 137 kDa peptidase with reported collagenolytic and gelatinolytic [...] Read more.
Cytophaga is a genus of Gram-negative bacteria occurring in soil and the gut microbiome. It is closely related to pathogenic Flavobacterium spp. that cause severe diseases in fish. Cytophaga strain L43-1 secretes cytophagalysin (CPL1), a 137 kDa peptidase with reported collagenolytic and gelatinolytic activity. We performed highly-confident structure prediction calculations for CPL1, which identified 11 segments and domains, including a signal peptide for secretion, a prosegment (PS) for latency, a metallopeptidase (MP)-like catalytic domain (CD), and eight immunoglobulin (Ig)-like domains (D3–D10). In addition, two short linkers were found at the D8–D9 and D9–D10 junctions, and the structure would be crosslinked by four disulfide bonds. The CPL1 CD was found closest to ulilysin from Methanosarcina acetivorans, which assigns CPL1 to the lower-pappalysin family within the metzincin clan of MPs. Based on the structure predictions, we aimed to produce constructs spanning the full-length enzyme, as well as PS+CD, PS+CD+D3, and PS+CD+D3+D4. However, we were successful only with the latter three constructs. We could activate recombinant CPL1 by PS removal employing trypsin, and found that both zymogen and mature CPL1 were active in gelatin zymography and against a fluorogenic gelatin variant. This activity was ablated in a mutant, in which the catalytic glutamate described for lower pappalyins and other metzincins was replaced by alanine, and by a broad-spectrum metal chelator. Overall, these results proved that our recombinant CPL1 is a functional active MP, thus supporting the conclusions derived from the structure predictions. Full article
(This article belongs to the Collection Feature Papers in 'Biomacromolecules: Proteins')
Show Figures

Figure 1

10 pages, 1252 KiB  
Article
A Cross-Sectional Study of Protein Changes Associated with Dementia in Non-Obese Weight Matched Women with and without Polycystic Ovary Syndrome
by Alexandra E. Butler, Abu Saleh Md Moin, Thozhukat Sathyapalan and Stephen L. Atkin
Int. J. Mol. Sci. 2024, 25(4), 2409; https://doi.org/10.3390/ijms25042409 - 18 Feb 2024
Cited by 2 | Viewed by 2849
Abstract
Dysregulated Alzheimer’s disease (AD)-associated protein expression is reported in polycystic ovary syndrome (PCOS), paralleling the expression reported in type 2 diabetes (T2D). We hypothesized, however, that these proteins would not differ between women with non-obese and non-insulin resistant PCOS compared to matched control [...] Read more.
Dysregulated Alzheimer’s disease (AD)-associated protein expression is reported in polycystic ovary syndrome (PCOS), paralleling the expression reported in type 2 diabetes (T2D). We hypothesized, however, that these proteins would not differ between women with non-obese and non-insulin resistant PCOS compared to matched control subjects. We measured plasma amyloid-related proteins levels (Amyloid-precursor protein (APP), alpha-synuclein (SNCA), amyloid P-component (APCS), Pappalysin (PAPPA), Microtubule-associated protein tau (MAPT), apolipoprotein E (apoE), apoE2, apoE3, apoE4, Serum amyloid A (SAA), Noggin (NOG) and apoA1) in weight and aged-matched non-obese PCOS (n = 24) and control (n = 24) women. Dementia-related proteins fibronectin (FN), FN1.3, FN1.4, Von Willebrand factor (VWF) and extracellular matrix protein 1 (ECM1) were also measured. Protein levels were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement. Only APCS differed between groups, being elevated in non-obese PCOS women (p = 0.03) relative to the non-obese control women. This differed markedly from the elevated APP, APCS, ApoE, FN, FN1.3, FN1.4 and VWF reported in obese women with PCOS. Non-obese, non-insulin resistant PCOS subjects have a lower AD-associated protein pattern risk profile versus obese insulin resistant PCOS women, and are not dissimilar to non-obese controls, indicating that lifestyle management to maintain optimal body weight could be beneficial to reduce the long-term AD-risk in women with PCOS. Full article
Show Figures

Figure 1

11 pages, 619 KiB  
Article
Helicobacter pylori and Pro-Inflammatory Protein Biomarkers in Myocardial Infarction with and without Obstructive Coronary Artery Disease
by Jonatan Wärme, Martin O. Sundqvist, Marcus Hjort, Stefan Agewall, Olov Collste, Christina Ekenbäck, Mats Frick, Loghman Henareh, Claes Hofman-Bang, Jonas Spaak, Peder Sörensson, Shams Y-Hassan, Per Svensson, Bertil Lindahl, Robin Hofmann and Per Tornvall
Int. J. Mol. Sci. 2023, 24(18), 14143; https://doi.org/10.3390/ijms241814143 - 15 Sep 2023
Cited by 6 | Viewed by 2065
Abstract
Myocardial infarction (MI) with obstructive coronary artery disease (MI-CAD) and MI in the absence of obstructive coronary artery disease (MINOCA) affect different populations and may have separate pathophysiological mechanisms, with greater inflammatory activity in MINOCA compared to MI-CAD. Helicobacter pylori (Hp) can cause [...] Read more.
Myocardial infarction (MI) with obstructive coronary artery disease (MI-CAD) and MI in the absence of obstructive coronary artery disease (MINOCA) affect different populations and may have separate pathophysiological mechanisms, with greater inflammatory activity in MINOCA compared to MI-CAD. Helicobacter pylori (Hp) can cause systemic inflammation and has been associated with cardiovascular disease (CVD). We aimed to investigate whether Hp infection is associated with concentrations of protein biomarkers of inflammation and CVD. In a case-control study, patients with MINOCA (n = 99) in Sweden were included, complemented by matched subjects with MI-CAD (n = 99) and controls (n = 100). Protein biomarkers were measured with a proximity extension assay in plasma samples collected 3 months after MI. The seroprevalence of Hp and cytotoxin-associated gene A (CagA) was determined using ELISA. The associations between protein levels and Hp status were studied with linear regression. The prevalence of Hp was 20.2%, 19.2%, and 16.0% for MINOCA, MI-CAD, and controls, respectively (p = 0.73). Seven proteins were associated with Hp in an adjusted model: tissue plasminogen activator (tPA), interleukin-6 (IL-6), myeloperoxidase (MPO), TNF-related activation-induced cytokine (TRANCE), pappalysin-1 (PAPPA), soluble urokinase plasminogen activator receptor (suPAR), and P-selectin glycoprotein ligand 1 (PSGL-1). Hp infection was present in one in five patients with MI, irrespective of the presence of obstructive CAD. Inflammatory proteins were elevated in Hp-positive subjects, thus not ruling out that Hp may promote an inflammatory response and potentially contribute to the development of CVD. Full article
(This article belongs to the Special Issue Molecular Advances in Helicobacter pylori Infections and Treatments)
Show Figures

Figure 1

14 pages, 1662 KiB  
Article
Time-Dependent Changes in Muscle IGF1-IGFBP5-PAPP System after Sciatic Denervation
by Ana Isabel Martín, Álvaro Moreno-Rupérez, Elena Nebot, Miriam Granado, Daniel Jaque, M. Paz Nieto-Bona, Asunción López-Calderón and Teresa Priego
Int. J. Mol. Sci. 2023, 24(18), 14112; https://doi.org/10.3390/ijms241814112 - 14 Sep 2023
Cited by 2 | Viewed by 2256
Abstract
Denervation-induced muscle atrophy is a frequent cause of skeletal muscle diseases. However, the role of the most important muscle growth factor, insulin-like growth factor (IGF-1), in this process is poorly understood. IGF-1 activity is controlled by six IGF-1 binding proteins (IGFBPs). In skeletal [...] Read more.
Denervation-induced muscle atrophy is a frequent cause of skeletal muscle diseases. However, the role of the most important muscle growth factor, insulin-like growth factor (IGF-1), in this process is poorly understood. IGF-1 activity is controlled by six IGF-1 binding proteins (IGFBPs). In skeletal muscle, IGFBP-5 seems to have an important role in atrophic processes. Furthermore, pappalysins (PAPP-A) modulate muscle growth by increasing IGF-1 bioavailability through IGFBP cleavage. We aimed to study the time-dependent changes in the IGF1-IGFBP5-PAPP system and its regulators in gastrocnemius muscle after sciatic denervation. Gastrocnemius atrophy and overexpression of IGF-1 was observed from day 3 post-denervation. The proteolytic factors measured were elevated from day 1 post-denervation onwards. Expression of both IGFBP-5 and pappalysins were increased on days 1 and 3. Subsequently, on days 7 to 14 pappalysins returned to control levels while IGFBP-5 remained elevated. The ratio IGFBP-5/PAPP-A was correlated with the main proteolytic markers. All data suggest that the initial increase of pappalysins could facilitate the IGF-1 action on muscle growth, whereas their subsequent decrease could lead to further muscle wasting. Full article
(This article belongs to the Special Issue Molecular Insight into Skeletal Muscle Atrophy and Regeneration)
Show Figures

Graphical abstract

18 pages, 1679 KiB  
Article
Recombinant IGF-1 Induces Sex-Specific Changes in Bone Composition and Remodeling in Adult Mice with Pappa2 Deficiency
by Leticia Rubio, Antonio Vargas, Patricia Rivera, Antonio J. López-Gambero, Rubén Tovar, Julian K. Christians, Stella Martín-de-las-Heras, Fernando Rodríguez de Fonseca, Julie A. Chowen, Jesús Argente and Juan Suárez
Int. J. Mol. Sci. 2021, 22(8), 4048; https://doi.org/10.3390/ijms22084048 - 14 Apr 2021
Cited by 13 | Viewed by 3568
Abstract
Deficiency of pregnancy-associated plasma protein-A2 (PAPP-A2), an IGF-1 availability regulator, causes postnatal growth failure and dysregulation of bone size and density. The present study aimed to determine the effects of recombinant murine IGF-1 (rmIGF-1) on bone composition and remodeling in constitutive Pappa2 knock-out [...] Read more.
Deficiency of pregnancy-associated plasma protein-A2 (PAPP-A2), an IGF-1 availability regulator, causes postnatal growth failure and dysregulation of bone size and density. The present study aimed to determine the effects of recombinant murine IGF-1 (rmIGF-1) on bone composition and remodeling in constitutive Pappa2 knock-out (ko/ko) mice. To address this challenge, X-ray diffraction (XRD), attenuated total reflection-fourier transform infra-red (ATR-FTIR) spectroscopy and gene expression analysis of members of the IGF-1 system and bone resorption/formation were performed. Pappa2ko/ko mice (both sexes) had reduced body and bone length. Male Pappa2ko/ko mice had specific alterations in bone composition (mineral-to-matrix ratio, carbonate substitution and mineral crystallinity), but not in bone remodeling. In contrast, decreases in collagen maturity and increases in Igfbp3, osteopontin (resorption) and osteocalcin (formation) characterized the bone of Pappa2ko/ko females. A single rmIGF-1 administration (0.3 mg/kg) induced short-term changes in bone composition in Pappa2ko/ko mice (both sexes). rmIGF-1 treatment in Pappa2ko/ko females also increased collagen maturity, and Igfbp3, Igfbp5, Col1a1 and osteopontin expression. In summary, acute IGF-1 treatment modifies bone composition and local IGF-1 response to bone remodeling in mice with Pappa2 deficiency. These effects depend on sex and provide important insights into potential IGF-1 therapy for growth failure and bone loss and repair. Full article
(This article belongs to the Special Issue Regulation of Bone Mineral Homeostasis)
Show Figures

Figure 1

21 pages, 4200 KiB  
Article
Impact of Long-Term HFD Intake on the Peripheral and Central IGF System in Male and Female Mice
by Santiago Guerra-Cantera, Laura M. Frago, María Jiménez-Hernaiz, Purificación Ros, Alejandra Freire-Regatillo, Vicente Barrios, Jesús Argente and Julie A. Chowen
Metabolites 2020, 10(11), 462; https://doi.org/10.3390/metabo10110462 - 13 Nov 2020
Cited by 10 | Viewed by 3666
Abstract
The insulin-like growth factor (IGF) system is responsible for growth, but also affects metabolism and brain function throughout life. New IGF family members (i.e., pappalysins and stanniocalcins) control the availability/activity of IGFs and are implicated in growth. However, how diet and obesity modify [...] Read more.
The insulin-like growth factor (IGF) system is responsible for growth, but also affects metabolism and brain function throughout life. New IGF family members (i.e., pappalysins and stanniocalcins) control the availability/activity of IGFs and are implicated in growth. However, how diet and obesity modify this system has been poorly studied. We explored how intake of a high-fat diet (HFD) or commercial control diet (CCD) affects the IGF system in the circulation, visceral adipose tissue (VAT) and hypothalamus. Male and female C57/BL6J mice received HFD (60% fat, 5.1 kcal/g), CCD (10% fat, 3.7 kcal/g) or chow (3.1 % fat, 3.4 kcal/g) for 8 weeks. After 7 weeks of HFD intake, males had decreased glucose tolerance (p < 0.01) and at sacrifice increased plasma insulin (p < 0.05) and leptin (p < 0.01). Circulating free IGF1 (p < 0.001), total IGF1 (p < 0.001), IGF2 (p < 0.05) and IGFBP3 (p < 0.01) were higher after HFD in both sexes, with CCD increasing IGFBP2 in males (p < 0.001). In VAT, HFD reduced mRNA levels of IGF2 (p < 0.05), PAPP-A (p < 0.001) and stanniocalcin (STC)-1 (p < 0.001) in males. HFD increased hypothalamic IGF1 (p < 0.01), IGF2 (p < 0.05) and IGFBP5 (p < 0.01) mRNA levels, with these changes more apparent in females. Our results show that diet-induced changes in the IGF system are tissue-, sex- and diet-dependent. Full article
(This article belongs to the Special Issue Neuroendocrine Control of Energy Metabolism)
Show Figures

Graphical abstract

Back to TopTop