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Abstract: Deficiency of pregnancy-associated plasma protein-A2 (PAPP-A2), an IGF-1 availability
regulator, causes postnatal growth failure and dysregulation of bone size and density. The present
study aimed to determine the effects of recombinant murine IGF-1 (rmIGF-1) on bone composition
and remodeling in constitutive Pappa2 knock-out (ko/ko) mice. To address this challenge, X-ray
diffraction (XRD), attenuated total reflection-fourier transform infra-red (ATR-FTIR) spectroscopy
and gene expression analysis of members of the IGF-1 system and bone resorption/formation were
performed. Pappa2ko/ko mice (both sexes) had reduced body and bone length. Male Pappa2ko/ko

mice had specific alterations in bone composition (mineral-to-matrix ratio, carbonate substitution
and mineral crystallinity), but not in bone remodeling. In contrast, decreases in collagen maturity
and increases in Igfbp3, osteopontin (resorption) and osteocalcin (formation) characterized the bone of
Pappa2ko/ko females. A single rmIGF-1 administration (0.3 mg/kg) induced short-term changes in
bone composition in Pappa2ko/ko mice (both sexes). rmIGF-1 treatment in Pappa2ko/ko females also
increased collagen maturity, and Igfbp3, Igfbp5, Col1a1 and osteopontin expression. In summary, acute
IGF-1 treatment modifies bone composition and local IGF-1 response to bone remodeling in mice
with Pappa2 deficiency. These effects depend on sex and provide important insights into potential
IGF-1 therapy for growth failure and bone loss and repair.

Keywords: apatite; bone; collagen; growth; IGFBP; pappalysin; sex difference; Pappa2 deficiency

1. Introduction

The growth hormone (GH)/insulin-like growth factor 1 (IGF-1) signaling system
constitutes a pleotropic axis required for bone development, mineral deposition and
skeletal growth [1–5]. IGF-1 exerts its effects on skeletal growth and metabolism by
interacting with other bone regulators like thyroid and parathyroid hormones and sex
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steroids, among others [6–8]. The rise in circulating levels of GH and IGF-1 during puberty
is associated with peak bone acquisition, while their declining levels during aging are
associated with bone loss. Molecular mechanisms of bone mass homeostasis require a
balance between bone resorption by osteoclasts and bone formation by osteoblasts [9].
A reduction of IGF-1 signaling by ablation, inactivation or haploinsufficiency in mouse
models causes severe growth retardation in a sex and age-dependent manner [3,10–13].
Clinically, mutations in IGF-1 and IGF-1 receptor also result in intrauterine and postnatal
growth retardation [14,15].

Pregnancy-associated plasma protein-A2 (PAPP-A2 or pappalysin-2) is a highly spe-
cific metalloprotease of IGF binding proteins 3 and 5 (IGFBP-3 and IGFBP-5) that regulates
the dissociation of IGF-1 from secondary and ternary complexes that include IGF acid-
labile subunit (IGF-ALS) [5,16–21]. Biologically-available IGF-1 binds its target receptors
and activates intracellular signaling pathways and gene expression to regulate growth
physiology and bone metabolism [5,22,23].

A new syndrome characterized by short stature, skeletal abnormalities and reduced
bone density was discovered by Argente and Dauber in 2016 and was found to be caused
by loss-of-function mutations in the human PAPP-A2 gene [24–27]. PAPP-A2-deficient
patients exhibit high circulating levels of IGF-1 bound to its ternary complex (IGFBP-3 or
IGFBP-5 and IGF-ALS) resulting in decreased concentrations of free IGF-1 [24]. As these
patients do not exhibit GH deficiency, and no PAPP-A2 replacement therapy is available,
they were treated with recombinant human IGF-1 (rhIGF-1). Short-term therapy with
rhIGF-1 in children with PAPP-A2 deficiency increased growth velocity and height [28],
and improved bone mineral density and trabecular bone structure [29].

Recent studies in animal models with Pappa2 gene deletion point to the mechanisms
by which PAPP-A2 contributes to skeletal growth and bone mineral density [30–33]. In
Pappa2-deficient mice, changes in trabecular and cortical mineral density were associated
with increased circulating levels of IGFBP-5 and reduced circulating levels of factors related
to bone turnover [33].

In the present study, we used an animal model of Pappa2 gene deletion (Pappa2ko/ko)
with a reduction in skeletal growth and bone mineral density, as previously described [29,31].
We explored the hypothesis that Pappa2 deletion impairs bone properties through changes
in crystallinity related to biological hydroxyapatite-(CaOH) and parameters of bone com-
position calculated according to relative contents of phosphates, carbonates and amides.
We also examined the short-term effects of a single injection of recombinant murine IGF-1
(rmIGF-1) on bone composition. Toward this goal, we employed two physical-chemical ap-
proaches: (1) X-ray powder diffraction (XRD) and Rietveld refinement for the quantitative
analysis of crystallographic parameters, associated with biological hydroxyapatite-(CaOH);
and (2) attenuated total reflection-fourier transform infra-red (ATR-FTIR) spectroscopy
for the quantification of relevant parameters that reflect the relative content of bone com-
pounds containing phosphates (v1v3PO4

3−), carbonates (v2CO3
2−) and amides I (vC=O),

such as mineral-to-matrix ratio, carbonate substitution, mineral crystallinity and collagen
maturity in bone. In addition, we aimed to assess whether changes in bone composition
are associated with a local IGF-1 response to bone remodeling. Toward this goal, we
employed real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR)
to analyze the gene expression of the local IGF-1 system (Igfbp3, Igfbp5, Igfals) and bone
resorption/formation markers (Col1a1, osteopontin, osteocalcin), and the response to rmIGF-1
treatment in bone.

2. Results
2.1. Pappa2 Deletion Reduces Body and Bone Length

There were overall effects of genotype and sex on the body length of adult mice
(Table 1). Tukey analysis indicated that Pappa2ko/ko males and females were shorter than
the respective Pappa2wt/wt males (### p < 0.001) and females (*** p < 0.001). The body length
of Pappa2ko/ko females was less than that of Pappa2ko/ko males (&& p < 0.01; Table 1).
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Table 1. Auxological parameters of Pappa2wt/wt and Pappa2ko/ko mice (males and females) 1.

wt/wt
Male

ko/ko
Male

wt/wt
Female

ko/ko
Female

Interaction
(Genotype

vs. Sex)
Genotype Sex

Body length (cm) 16.5 ± 0.12 15.8 ± 0.08 ### 16.3 ± 0.07 15.2 ± 0.16 ***/&& ns F1.91 = 70.78
p < 0.0001

F1.91 = 13.04
p = 0.0005

Femur length (cm) 1.61 ± 0.04 1.25 ± 0.03 ### 1.41 ±0.02 ### 1.2 ± 0.002 *** F1.24 = 5.46
p = 0.028

F1.24 = 87.42
p < 0.0001

F1.24 = 17.70
p = 0.0003

Tibia length (cm) 1.07 ± 0.03 0.87 ± 0.01 ### 1.08 ± 0.03 0.88 ± 0.02 *** ns F1.24 = 45.82
p < 0.0001 ns

Femur weight (g) 0.32 ± 0.02 0.21 ± 0.004 ### 0.21 ± 0.01 ### 0.18 ± 0.004 F1.24 = 6.93
p = 0.014

F1.24 = 25.01
p < 0.0001

F1.24 = 20.05
p = 0.0002

Tibia weight (g) 0.21 ± 0.01 0.11 ± 0.008 ### 0.14 ± 0.007 ### 0.08 ± 0.004 *** F1.24 = 7.07
p = 0.013

F1.24 = 93.98
p < 0.0001

F1.24 = 37.49
p < 0.0001

Femur
weight/length

ratio (g/cm)
0.2 ± 0.01 0.16 ± 0.006 # 0.15 ± 0.008 ### 0.15 ± 0.003 ns ns F1.24 = 10.79

p = 0.0031

Tibia weight/length
ratio (g/cm) 0.2 ± 0.015 0.13 ± 0.005 ### 0.13 ± 0.008 ### 0.1 ± 0.002 * ns F1.24 = 31.50

p < 0.0001
F1.24 = 31.04
p = 0.0031

Femur/body weight
ratio (mg/g) 10.12 ± 1.22 7.09 ± 0.18 # 8.39 ± 0.81 9.22 ± 0.33 F1.24 = 6.43

p = 0.018 ns ns

Tibia/body weight
ratio (mg/g) 6.62 ± 0.61 3.95 ± 0.25 ### 5.54 ± 0.36 4.53 ± 0.31 ns F1.24 = 20.22

p = 0.0001 ns

1 Data are represented as mean ± S.E.M. Body length: n = 12–33 (wt/wt male, n = 22; ko/ko male, n = 33; wt/wt female, n = 28; ko/ko
female, n = 12). Bone parameters: n = 7/group. Two-way ANOVA and Tukey-corrected tests: #/### p < 0.05/0.001 versus wt/wt males;
*/*** p < 0.05/0.001 versus wt/wt females; && p < 0.01 versus ko/ko males. ns, not significant.

Overall, the effects of genotype on the femur and tibia length, femur and tibia weight,
and relative weights of tibia were found (Table 1). The overall effects of sex on the femur
length and weight, tibia weight and relative weights of femur and tibia were also observed
(Table 1), with females having overall lower values than males (### p < 0.001). Significant
interactions between genotype and sex were found in femur length and weight, tibia
weight and femur/body weight ratio of the adult mice (Table 1), with males showing
greater effects of Pappa2 deletion (#/### p < 0.05/0.001) than females (*** p < 0.001).

2.2. Pappa2 Deletion Alters Hydroxyapatite Crystallinity in the Femur of Male Mice, But Not
Female Mice

Crystallographic indexes of hydroxyapatite-(CaOH) found in the femurs of adult
mice were quantified by XRD and Rietveld refinement. The overall effects of genotype
on hydroxyapatite crystallinity and crystallite size were found (Table 2). Sex effects on
hydroxyapatite crystallinity were also observed, with females having a higher index than
males (## p < 0.01). A significant interaction between genotype and sex was found in
hydroxyapatite crystallinity (Table 2), with a significant increase in Pappa2ko/ko males
compared with Pappa2wt/wt males (## p < 0.01). No difference between WT (wild-type) and
KO (knock-out) females was found. Crystallite size was significantly lower in Pappa2ko/ko

mice (# p < 0.05). No interactions between factors were observed for crystallite size (Table 2)
or other parameters such as R-Bragg factor, cell volume, crystal linear absorbance coefficient
or crystal density (Table S1).
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Table 2. Crystallographic indexes of bone hydroxyapatite-(CaOH) in the femur of Pappa2wt/wt and Pappa2ko/ko mice (males
and females) 1.

wt/wt
Male

ko/ko
Male

wt/wt
Female

ko/ko
Female

Interaction
(Genotype

vs. Sex)
Genotype Sex

Sample
Crystallinity (%) 45.40 ± 3.87 59.57 ± 2.02 ## 60.17 ± 2.77 ## 57.85 ± 2.07 F1.24 = 8.73

p = 0.0069
F1.24 = 4.51
p = 0.044

F1.24 = 5.47
p = 0.027

Crystallite Size
(LVol-IB, nm) 36.25 ± 5.75 24.86 ± 1.64 # 27.36 ± 3.20 24.61 ± 2.41 ns F1.24 = 3.95

p = 0.05 ns

1 Data are represented as mean ± S.E.M. (n = 7/group). Two-way ANOVA and Tukey-corrected tests: #/## p < 0.05/0.01 versus wt/wt male
group. See Figure S1A for representative diffractograms and Table S1 for additional information. ns, not significant.

2.3. Pappa2 Deletion Alters Bone Composition in the Femur of Male Mice, but Not Female Mice

Relative contents of compounds containing phosphates (v1v3PO4
3−), carbonates

(v2CO3
2−) and amides I (vC=O) in the femurs of adult mice were identified by ATR-FTIR

spectroscopy, and quantified to calculate relevant parameters related to bone composi-
tion, such as mineral-to-organic matrix (M/M) ratio, an index of the relative amount
of phosphate per amount of collagen; carbonate substitution (C/p ratio), an index of
phosphate-to-carbonate-substituted apatites; mineral crystallinity, a degree of order in
a solid; and collagen crosslink ratio, an index of collagen maturity. The overall effects
of genotype on M/M ratio, C/P ratio, mineral crystallinity and collagen maturity were
found (Table 3), with Pappa2 deletion inducing a higher M/M ratio (# p < 0.05 in males)
and lower C/P ratio (## p < 0.01 in males), mineral crystallinity (# p < 0.05 in males) and
collagen maturity (##/&&& p < 0.01/0.001 in both sexes) than in respective WT mice. The
overall effects of sex on the M/M ratio, C/P ratio and collagen maturity were observed
(Table 3), with females having an overall higher M/M ratio (# p < 0.05) and lower C/P
ratio (# p < 0.05) and collagen maturity (### p < 0.001) than males. Interestingly, significant
interactions between genotype and sex were found in mineral crystallinity, and reflected
significant decreases in Pappa2ko/ko males compared with controls (# p < 0.05) and no
significant effect of Pappa2 deletion in females (Table 3).

Table 3. Parameters of bone composition in the femur of Pappa2wt/wt and Pappa2ko/ko mice (males and females) 1.

wt/wt
Male

ko/ko
Male

wt/wt
Female

ko/ko
Female

Interaction
(Genotype

vs. Sex)
Genotype Sex

Mineral-to-matrix ratio 2 2.20 ± 0.08 2.53 ± 0.01 # 2.55 ± 0.11 # 2.60 ± 0.04 ns F1.24 = 4.97
p = 0.035

F1.24 = 4.26
p = 0.049

Carbonate substitution 3 0.243 ± 0.004 0.222 ± 0.006 ## 0.223 ± 0.006 # 0.217 ± 0.002 ns F1.24 = 6.30
p = 0.019

F1.24 = 6.96
p = 0.014

Mineral crystallinity 4 0.976 ± 0.005 0.957 ± 0.006 # 0.956 ± 0.005 # 0.956 ± 0.003 F1.24 = 4.23
p = 0.05

F1.24 = 4.21
p = 0.05 ns

Collagen maturity 5 2.044 ± 0.021 1.848 ± 0.042 ## 1.692 ± 0.047 ### 1.373 ± 0.022 *** ns F1.24 = 52.84
p < 0.0001

F1.24 = 136.3
p < 0.0001

1 Data are represented as mean ± S.E.M. (n = 7/group). Two-way ANOVA and Tukey-corrected tests: #/##/### p < 0.05/0.01/0.001 versus
wt/wt males; *** p < 0.001 versus wt/wt females. ns, not significant. See Figure S1B,C for representative spectra and Table S2 for additional
information. 2 Mineral-to-organic matrix ratio: Amount of mineral (phosphate) per amount of organic matrix (collagen) per volume
analyzed. Ratio of phosphate peak area (v1v3PO4

3−: A900–1200 cm−1) and amide I peak area (vC = O: A1585–1720 cm−1). 3 Carbonate
substitution: Relative amount and type of carbonate substitution in the bone mineral apatite lattice. Ratio of carbonate peak area (v2CO3

2−:
A850–890 cm−1) and phosphate peak area (v1v3PO4

3−: A900–1200 cm−1). 4 Mineral crystallinity: Transformation of non apatitic domains
into apatitic ones. Ratio of absorbance height at 1030 cm−1 and 1020 cm−1 after the application of second derivatives. 5 Collagen maturity: A
measure of collagen crosslink ratio of pyridinium (an older, trivalent collagen crosslink) at 1660 cm−1 to dehydrodihydroxylysinonorleucine
(a younger, divalent, and freshly synthesized collagen crosslink) at 1690 cm−1 after the application of second derivatives.

2.4. rmIGF-1 Induces Sex-Specific Changes in Bone Composition of Pappa2ko/ko Mice

Short-term effects of rmIGF-1 on bone composition were also evaluated over time (0,
30, 120 and 240 min) in male and female femurs (Figure 1). The overall effects of genotype,
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sex and time on M/M ratio, C/P ratio, mineral crystallinity and collagen maturity were
detected (F1.114 > 18.67, p < 0.001). Significant interactions between genotype, sex and
time were found in M/M ratio, C/P ratio, mineral crystallinity and collagen maturity
(F3.114 = 3.50, p = 0.02; F3.114 = 4.04, p = 0.009; F3.114 = 5.58, p = 0.001; F3.114 = 30.85, p = 0.001,
respectively), suggesting that rmIGF-1 treatment affected bone composition depending on
sex and genotype over time.
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Figure 1. Quantitative analysis of the mineral-to-organic matrix (M/M) ratio, carbonate substitution (C/P ratio), mineral
crystallinity and collagen maturity in the femur of Pappa2wt/wt and Pappa2ko/ko mice at 0′, 30′, 120′ and 240′ after rmIGF-1
administration in males (A–D) and females (E–H). Data are represented as mean ± S.E.M. (n = 6–9/group). Tukey-corrected
tests: #/##/### p < 0.05/0.01/0.001 between genotypes (same time); */**/*** p < 0.05/0.01/0.001 versus 0′ (same genotype).

In males, treatment with rmIGF-1 induced an acute, transitory increase in the M/M
ratio of the Pappa2wt/wt femur (30′ versus 0′: *** p < 0.001), which gradually returned
to normality over time (120′ and 240′ versus 0′: * p < 0.05/ns respectively; Figure 1A).
However, this transitory increase was not observed in the M/M ratio of the Pappa2ko/ko

male femur. Treatment with rmIGF-1 in Pappa2ko/ko males induced a gradual increase
in the M/M ratio over time (30′, 120′ and 240′ versus 0′: */** p < 0.05/0.01; Figure 1A).
In contrast, treatment with rmIGF-1 induced opposite effects on C/P ratio, mineral crys-
tallinity and collagen maturity in the femur of Pappa2wt/wt males. Acute decreases were
found in the C/P ratio, mineral crystallinity and collagen maturity in the Pappa2wt/wt

male femur (30′ versus 0′: *** p < 0.001; Figure 1B–D), and while C/P ratio and collagen
maturity returned to normality over time (120′ and 240′ versus 0′: * p < 0.05/ns and
** p < 0.01/ns respectively; Figure 1B,D), mineral crystallinity remained low (120′ and 240′

versus 0′: *** p < 0.001; Figure 1C). Treatment with rmIGF-1 in Pappa2ko/ko males induced
gradual decreases in the C/P ratio and mineral crystallinity over time (30′, 120′ and 240′

versus 0′: */** p < 0.05/0.01; Figure 1B,C) and no changes were found in collagen maturity
(Figure 1D). Basal differences between genotypes (Pappa2ko/ko versus Pappa2wt/wt males
at 0′: #/## p < 0.05/0.01) observed in M/M ratio, C/P ratio and mineral crystallinity were
not found 30′ after rmIGF-1 treatment. Excepting mineral crystallinity, differences between
genotypes were gradually recovered over time (120′: ##p < 0.01; 240′: ### p < 0.001) after
rmIGF-1 treatment (Figure 1B–D).
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In females (Figure 1E–H), rmIGF-1 treatment increased the M/M ratio and decreased
the C/P ratio and mineral crystallinity in both genotypes, effects that were maintained over
time (30′, 120′ and 240′ versus 0′: */**/*** p < 0.05/0.01/0.001). These rmIGF-1-induced
changes were more significant in the femur of Pappa2ko/ko females (Figure 1E–G). However,
treatment with rmIGF-1 did not change collagen maturity of the Pappa2wt/wt female femur,
while a transitory increase in the collagen maturity was found in the Pappa2ko/ko female
femur (30′ and 120′ versus 0′: *** p < 0.001) that gradually returned to normality over time
(240′ versus 0′: ns; Figure 1H). Accordingly, significant differences between genotypes
(Pappa2ko/ko versus Pappa2wt/wt females: #/##/### p < 0.05/0.01/0.001) were found in M/M
ratio, C/P ratio and mineral crystallinity after rmIGF-1 treatment and mostly maintained
over time (Figure 1E–G).

2.5. Pappa2 Deletion Affects Igfbp3 Gene Expression in the Tibia

To further understand the effects of Pappa2 gene deletion and the putative low IGF
bioavailability on bone composition we evaluated the local IGF-1 system by analyzing
relative mRNA levels of Pappa2, Igfbp3, Igfbp4, Igfbp5, Igfals and Stc2 in the tibia (Table 4).
No signal was detected for mRNA levels of Pappa2, Igfbp4 or Stc2 in the tibias of either
sex. An overall effect of genotype on the mRNA levels of Igfbp3 was observed (Table 4),
with Pappa2 deletion inducing higher expression than WT (Pappa2ko/ko versus Pappa2wt/wt

females: ** p < 0.01). The overall effects of sex on the mRNA levels of Igfbp5 and Igfals
were found, with females having lower expression than males (Pappa2wt/wt females versus
Pappa2wt/wt males: ## p < 0.01; Pappa2ko/ko females vs. Pappa2kot/ko males: && p < 0.01).
No interactions between genotype and sex were found in the mRNA levels of Igfbp3, Igfbp5
or Igfals (Table 4).

Table 4. Relative mRNA expression of Igfbp3, Igfbp5 and Igfals in the tibia of Pappa2wt/wt and Pappa2ko/ko mice (males
and females) 1.

wt/wt
Male

ko/ko
Male

wt/wt
Female

ko/ko
Female

Interaction
(Genotype vs. Sex) Genotype Sex

Igfbp3 1.00 ± 0.29 1.51 ± 0.27 0.93 ± 0.19 2.63 ± 0.51 ** ns F1.24 = 10.54
p = 0.003 ns

Igfbp5 1.00 ± 0.18 1.23 ± 0.14 0.63 ± 0.14 0.93 ± 0.15 ns ns F1.24 = 4.64
p = 0.041

Igfals 1.00 ± 0.03 1.06 ± 0.05 0.53 ± 0.04 ## 0.59 ± 0.04 && ns ns F1.24 = 108.6
p < 0.0001

1 Data are represented as mean ± S.E.M. (n = 7/group). Two-way ANOVA and Tukey-corrected tests: ## p < 0.01 versus wt/wt males;
** p < 0.01 versus wt/wt females; && p < 0.01 versus ko/ko males. Abbreviations: Igfbp3, insulin-like growth factor binding protein 3;
Igfbp5, insulin-like growth factor 5, Igfals, insulin-like growth factor acid-labile subunit; ns, not significant.

2.6. rmIGF-1 Induces Sex-Specific Changes in Local IGF-1 System of Pappa2ko/ko Mice

We analyzed the short-term effects of rmIGF-1 treatment on the relative mRNA levels
of Igfbp3, Igfbp5 and Igfals over time (0, 30, 120 and 240 min) in the male and female tibias
(Figure 2). Overall effects of genotype on Igfbp3 and Igfbp5 (F1.114 > 48.12, p < 0.0001), and
overall effects of sex (F1.114 > 33.76, p < 0.0001) and time (F1.114 > 3.37, p < 0.024) on all
three factors were found. Significant interactions between genotype, sex and time were
observed in the mRNA levels of Igfbp3, Igfbp5 and Igfals (F3.114 = 3.92, p = 0.011; F3.114 = 5.39,
p = 0.002; F3.114 = 3.33, p = 0.022 respectively), suggesting that rmIGF-1 treatment affected
local IGF-1 system depending on sex and genotype over time.
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In males, treatment with rmIGF-1 did not modify the mRNA levels of Igfbp3 in the
Pappa2wt/wt tibia (Figure 2A). However, Igfbp3 mRNA levels were significantly increased
over time in the Pappa2ko/ko tibia (240′ versus 0′: *** p < 0.001). rmIGF-1 treatment decreased
the mRNA levels of Igfbp5 and Igfals in male tibia of both genotypes (30′, 120′ and 240′

versus 0′: */**/*** p < 0.05/0.01/0.001; Figure 2B,C). rmIGF-1 treatment-related differences
between genotypes (Pappa2ko/ko versus Pappa2wt/wt males) were observed in the tibia
mRNA levels of Igfbp3 (120′ and 240′: ##/### p < 0.01/0.001; Figure 2A) and Igfals (120′:
# p < 0.05; Figure 2C).

In females, treatment with rmIGF-1 did not modify the mRNA levels of Igfbp3 or
Igfbp5 in the Pappa2wt/wt tibia (Figure 2D,E). However, Igfbp3 and Igfbp5 mRNA levels
were significantly increased over time in the Pappa2ko/ko tibia (30′, 120′ and 240′ versus 0′:
*/**/*** p < 0.05/0.01/0.001). Treatment with rmIGF-1 induced a transitory increase in the
Igfals mRNA levels of the Pappa2wt/wt female tibia (30′ and 120′ versus 0′: * p < 0.05), which
gradually returned to normality over time (Figure 2E). In contrast, treatment with rmIGF-1
did not modify Igfals mRNA levels of the Pappa2ko/ko female tibia (Figure 2E). Accordingly,
rmIGF-1 treatment-related differences between genotypes (Pappa2ko/ko versus Pappa2wt/wt

females) were observed in the mRNA levels of Igfbp3, Igfbp5 and Igfals in the tibia over time
(30′: ## p < 0.01; 120′ and 240′: ### p < 0.001; Figure 2D–F).

2.7. Pappa2 Deletion Affects the Gene Expression of Bone Remodeling Markers in the Tibia

To further understand the effects of Pappa2 deletion and local IGF-1 system dys-
regulation on bone composition, we evaluated bone turnover or remodeling (resorp-
tion/formation) by analyzing relative mRNA expression of osteopontin, osteocalcin and
Col1a1 in the tibia (Table 5). The overall effects of the genotype on the mRNA levels of
osteocalcin (bone resorption) were found, with Pappa2 deficient mice having overall higher
expression than WT (Table 5). Significant interactions between genotype and sex were
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found on the mRNA levels of osteopontin and osteocalcin (bone formation), and reflected
significant increases in Pappa2ko/ko females compared with controls (*/**p < 0.05/0.01).

Table 5. Relative mRNA expression of Col1a1, Osteopontin and Osteocalcin in the tibia of Pappa2wt/wt and Pappa2ko/ko mice
(males and females) 1.

wt/wt
Male

ko/ko
Male

wt/wt
Female

ko/ko
Female

Interaction
(Genotype vs. Sex) Genotype Sex

Col1a1 1.00 ± 0.19 1.13 ± 0.20 1.25 ± 0.20 1.65 ± 0.26 ns ns ns

Osteopontin 1.00 ± 0.20 0.77 ± 0.15 0.64 ± 0.14 1.80 ± 0.44 * F1.24 = 6.72
p = 0.016 ns ns

Osteocalcin 1.00 ± 0.09 0.90 ± 0.12 0.79 ± 0.12 1.56 ± 0.18 **/& F1.24 = 10.15
p = 0.004

F1.24 = 6.16
p = 0.02 ns

1 Data are represented as mean ± S.E.M. (n = 7/group). Two-way ANOVA and Tukey-corrected tests: */** p < 0.05/0.01 versus wt/wt
females; & p < 0.05 versus ko/ko males. Abbreviations: Col1a1, collagen, type 1, alpha 1; ns, not significant.

2.8. rmIGF-1 Induces Sex-Specific Changes in Bone Remodeling Markers of Pappa2ko/ko Mice

We analyzed short-term effects of rmIGF-1 treatment on the relative mRNA expression
of osteopontin, osteocalcin and Col1a1 over time (0, 30, 120 and 240 min) in male and female
tibias (Figure 3). Overall effects of genotype (F1.114 > 4.96, p < 0.028), sex (F1.114 > 63.20,
p < 0.001) and time (F3.114 > 3.62, p < 0.016) on the three bone remodeling markers were
found. Significant interactions between genotype, sex and time were observed in the mRNA
levels of Col1a1 and osteopontin (F3.114 = 6.01, p = 0.001; F3.114 = 4.09, p = 0.009 respectively),
suggesting that rmIGF-1 treatment affected bone remodeling markers, depending on sex
and genotype over time.
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Figure 3. Relative mRNA levels of Col1a1, osteopotin and osteocalcin in the tibia of Pappa2wt/wt and Pappa2ko/ko mice
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*/**/*** p < 0.05/0.01/0.001 versus 0′ (same genotype).
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In males, treatment with rmIGF-1 decreased the mRNA levels of Col1a1 and osteopontin in
the tibia of both genotypes over time (30′, 120′ and 240′ versus 0′: */**/*** p < 0.05/0.01/0.001;
Figure 3A,B). In contrast, rmIGF-1 treatment increased the mRNA levels of osteocalcin in the
tibia of Pappa2ko/ko males, but not Pappa2wt/wt males, at 30′ and 240′ after administration
(30′ and 240′ versus 0′: */** p < 0.05/0.01; Figure 3C). No sustained differences between
genotypes (Pappa2ko/ko versus Pappa2wt/wt males) were found in the mRNA levels of the
three bone remodeling markers.

In females, treatment with rmIGF-1 did not modify the mRNA levels of Col1a1 or
osteopontin in the tibia of Pappa2wt/wt mice (Figure 3D,E). However, Col1a1 and osteopontin
mRNA levels were significantly increased over time in Pappa2ko/ko female tibia (30′, 120′

and 240′ versus 0′: **/*** p < 0.01/0.001). Treatment with rmIGF-1 induced a transitory
increase in osteocalcin mRNA levels of the Pappa2wt/wt female tibia (30′ and 120′ versus
0′: *p < 0.05), which gradually returned to normality over time (Figure 3F). However,
no changes in osteocalcin mRNA levels in the tibia of Pappa2ko/ko females were found
after treatment (Figure 3F). rmIGF-1 treatment-related differences between genotypes
(Pappa2ko/ko versus Pappa2wt/wt females) were observed in the tibia mRNA levels of Col1a1
and osteopontin over time (30′: ##/### p < 0.01/0.001; 120′ and 240′: ### p < 0.001; Figure 3D,E).
Basal differences between genotypes (Pappa2ko/ko versus Pappa2wt/wt females: ## p < 0.01)
in the mRNA levels of osteocalcin were not observed after rmIGF-1 treatment (Figure 3F).

3. Discussion

In the present study, we showed that acute treatment with recombinant IGF-1 modu-
lates bone composition and remodeling in Pappa2-deficient mice, in accordance with human
clinical studies [25–34]. The effects of Pappa2 deficiency itself, as well as the short-term
response to rmIGF-1 treatment on bone composition parameters, and the expression of
relevant components of local IGF-1 system (Igfbp3, Igfbp5, Igfals) and bone remodeling
(Col1a1, osteopontin, osteocalcin) were shown to be sex-dependent. Bone composition was
analyzed using physical-chemical approaches to detect changes in bone crystallinity and
relevant parameters (mineral-to-collagen matrix ratio and carbonate substitution) that
reflect the relative content of bone compounds containing phosphates (v1v3PO4

3−), carbon-
ates (v2CO3

2−) and amides I (vC=O), including mineral crystallinity (a degree of order in
a solid) and collagen maturity (collagen crosslink ratio) in bone. The main results of the
present study are as follows: (1) Pappa2 KO in mice of both sexes reduces body length, and
bone length and weight, as expected from previous studies [30–33]; (2) Pappa2 KO in mice
alters crystallographic parameters (hydroxyapatite crystallinity and crystallite size) in the
femur of males, but not in that of females; (3) Pappa2 KO in mice impairs the M/M ratio
and carbonate substitution, as well as mineral crystallinity in the femur of males, but not in
females; (4) Pappa2 KO in mice of both sexes reduces collagen maturity; and (5) Pappa2 KO
in female mice specifically increases the mRNA expression of Igfbp3, osteopontin (a marker
of bone resorption) and osteocalcin (a marker of bone formation) in the tibia, but not in
that of males. These results suggest that Pappa2 deficiency alters bone length, weight and
composition, probably through changes in bone remodeling, in a sex-dependent manner.

A single administration of rmIGF-1 to adult mice induced short-term effects on bone
composition and remodeling in a sex and genotype-dependent manner. The main results
are as follows: (1) There is an increase in the M/M ratio and decreases in carbonate
substitution and mineral crystallinity in Pappa2 KO mice of both sexes (Pappa2 WT mice
showed a short transitory effect of rmIGF-1 on these parameters); (2) Administration of
rmIGF-1 resulted in a specific increase in collagen maturity in Pappa2 KO females (no effect
of rmIGF-1 in Pappa2 WT females); and (3) Specific increases in the mRNA expression of
Igfbp3, Igfbp5, Col1a1 and osteopontin in Pappa2 KO females (no effects of rmIGF-1 in Pappa2
WT females) were also observed. Except in the higher expressions of Igfbp3 in Pappa2
KO males, no further differences between genotypes in the local IGF-1 system or bone
remodeling markers were found in males.
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These results suggest that rmIGF-1 treatment at a dose of 0.3 mg/kg may facilitate
changes in bone composition, as addressed by parameters that reflect relative amounts
of bone compounds containing phosphates, carbonates and amides I, which in turn, are
controlled by local IGF-1 signaling and molecular mechanisms of bone mass homeostasis,
such as a balance between bone resorption and formation. Some of these responses to
exogenous IGF-1 were genotype-dependent. For instance, specific increases in Igfbp5
and/or Igfbp3 in the bone of Pappa2 KO mice likely reflect the requirement for PAPP-A2
in this response, as the exogenous IGF-1 can become locally bound in ternary complexes.
Clinically, these results further contribute to our understanding of the therapeutic efficacy of
recombinant IGF-1 in patients who display a novel syndrome characterized by short stature,
skeletal abnormalities and increased formation of ternary complexes due to mutations in
PAPP-A2 resulting in low IGF-1 bioactivity [25,27–29].

Many of the results observed here were sex-dependent and sex-specific regulation of
bone properties and skeletal growth by GH/IGF-1 signaling system [5,7,35–37], including
IGFALS, IGFBP-2, IGFBP-5, IGFBP-4, PAPP-A and PAPP-A2, have been reported [20,33,38–41].
Sex differences were also observed in basal bone physiology of Pappa2 deficient mice. Sex
effects reflect an overall lower expression of Igfbp5 and Igfals, likely resulting from restricted
IGF-1 production, could participate in the shorter bone length (12% less) and lower weight
(34% less) compared to male bone. Sex effects are also associated with an overall difference
in hydroxyapatite crystallinity, as well as M/M ratio, carbonate substitution and collagen
maturity parameters, which were calculated from the relative content of bone compounds
containing phosphates (v1v3PO4

3−), carbonates (v2CO3
2−) and amides I (vC=O). It is clear

that sex steroid hormones are implicated in the differences between males and females
in expression levels of components of the GH/IGF-1 axis and skeletal structure [7,42].
In humans, sex steroids contribute to the differences in pubertal growth that are mainly
caused by greater periosteal expansion, smaller marrow diameter and greater longitudinal
growth velocity and bone mass in males, compared to females [43–45], as well as to the
earlier pubertal rise in GH and IGF-1 in girls than in boys and protection from age-related
bone loss [6,42]. Consequently, bone strength shows a greater gain during postnatal
growth and less decline during aging in males than in females [7,46]. In this context,
we propose that sex-specific control of IGF-1 bioavailability through regulation of IGF
ternary complexes could modify bone composition and at least partially explain the lower
mechanical strength in the female bone [47]. Future studies should elucidate whether PAPP-
A2 deficiency compromises the effects of estrogens and androgens in bone remodeling
during growth and aging.

Constitutive and osteoblast-specific deletion of Pappa2 in mice has been described
to affect postnatal skeletal growth, including bone mineral density, in a sex and age-
dependent manner [31,32]. Interestingly, the bone of male Pappa2ko/ko mice has been
described to be more similar to that of WT females than WT males [31]. Compared to
WT males, our results indicated that the femur of Pappa2 ko/ko males was shorter (up to
22% less), weighed less (up to 34% less), had a smaller crystallite size and decreases in
carbonate substitution (relative amount of carbonates), mineral crystallinity and collagen
maturity, and exhibited increases in sample crystallinity and M/M ratio (relative amount
of phosphates). However, these alterations in bone composition in the femur of Pappa2
ko/ko males were not accompanied by significant changes in the local IGF system or bone
remodeling. In contrast, the significant reduction in bone length and weight (15–18% less)
in Pappa2ko/ko female mice was associated with lower collagen maturity and a higher
expression of Igfbp3. In this regard, bone turnover mechanisms could involve circulating
factors such as IGFBP-3 or IGFBP-5 [33]. However, unlike Igfbp3, we found no genotype
effect in the bone expression of Igfbp5 and Igfals, which is not consistent with previously
described changes in its circulating levels [33,34]. These authors reported that Pappa2ko/ko

mice of both sexes had higher serum levels of IGFBP-5 than their WT counterparts at
19 weeks, although the difference was not significant at 30 weeks [33]. Additionally, in a
report where male and female mice were not studied separately [34], circulating levels of
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IGFBP-5 and IGFBP-3 were higher and lower, respectively, in the serum of Pappa2ko/ko mice
at six weeks of age. These results are in partial contrast with those in male Pappa2ko/ko mice
showing increased Igfbp3 expression in bone, as shown here, and those in patients with
PAPP-A2 deficiency showing increased circulating levels of IGFBP-3 [28]. This apparent
contradiction could reflect differing roles and regulation of IGFBPs in endocrine versus
autocrine/paracrine signaling [20,48–52]. Indeed, no effects of Pappa2 deletion on the
expression of these factors in the liver or kidney were described [34], suggesting tissue
specific regulation of some members of the local IGF system. Moreover, locally generated
IGF-1 can regulate bone growth in response to GH actions in liver-specific GH-receptor
KO mice [53].

Molecular mechanisms balancing bone resorption by osteoclasts and bone formation
by osteoblasts reflect the rate of bone turnover and remodeling [9]. In the present study,
bone expression of osteopontin and osteocalcin (bone markers implicated in bone resorption
and bone formation respectively) were increased in Pappa2ko/ko females. However, no
change was found in Col1a1 expression, a major component of type I collagen that strength-
ens bone. These results suggest that higher bone turnover may also associate with lower
collagen maturity in the bone of Pappa2ko/ko females. Although circulating levels of bone
remodeling markers were not measured here, and these results contrast with the lower
circulating levels of other markers of bone resorption (TRACP 5b) and bone formation
(PINP), previously described in the plasma of female mice with Pappa2 deletion [33]. Again,
this could reflect differences between local and circulating mechanisms controlling bone
mass homeostasis. Bone turnover markers can also be modified by factors, such as feeding
(lower resorption), bone loss and fractures (increased levels of all markers), and sources
other than bone, such as platelets, liver, lungs and heart, can contribute significantly to
circulating levels [54]. Higher levels of all bone turnover markers are highly correlated
with the increased rate of bone loss in women [54–56], as observed here in Pappa2ko/ko

females. Overall, our data suggest that an elevated rate of bone turnover, including lower
collagen crosslink ratio, is a key determinant of bone immaturity in Pappa2 deficiency.

The changes in bone mineral composition, resulting from ionic substitution in biologi-
cal hydroxyapatite, can induce alterations in hexagonal architecture, collagen structure and
crystallinity affecting bone resistance or fragility [57–65]. Phosphate and carbonate sub-
stitutions in the apatite structure are responsible for changes in the degree of crystallinity,
weakening the bonds and increasing mineral solubility [62,63]. Whereas, amide content
in collagen-containing structures confers flexibility [64]. Carbonated hydroxyapatite con-
tributes to a critical structure that affects mechanical strength of bone [65–67]. Here, the
higher crystallinity and smaller crystallite size of the resulting hydroxyapatite are accom-
panied by a higher mineral-to-matrix ratio (relative amount of phosphates) and lower
carbonate substitution and mineral crystallinity (related to crystallite size and perfection)
in the femur of both WT females and Pappa2ko/ko males, compared to WT males. This is
consistent with previous reports showing lower bone mineral density in Pappa2 transgenic
mice in a sex-dependent manner [33]. Clinically, the fragility and fracture risk, related to
untreated osteoporotic bone are associated with increases in cancellous crystallinity and
mineral-to-matrix ratio [54,68]. Elevated levels of carbonate substitution were also found
in fracture and osteoporosis cases [68]. Together, our data suggest that Pappa2 deletion
results in the alteration of key parameters of bone composition that could denote a level of
bone fragility.

In patients with PAPP-A2 deficiency recombinant human IGF-1 (rhIGF-1) was em-
ployed [28,29], but recombinant human PAPP-A2 could be a promising therapy [69].
Benefits of rhIGF-1 treatment include improved growth and increased bone mineral density
and trabecular structure [28,29]. The administration of rhIGF-1 improves bone formation
in aged mice [35], an effect that was markedly potentiated when combined with IGFBP-3 in
ovariectomized rats [70], suggesting possible indications of long-term treatment, even after
adult height is reached. In the present study, acute rmIGF-1 treatment induced a sex- and
genotype-specific effect on bone composition, mostly reflected in short-term substitutions
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of the ionic content of phosphates, carbonates and amides I. In Pappa2ko/ko mice (males and
females), rmIGF-1 increases the M/M ratio and decreases the carbonate substitution and
mineral crystallinity over time, likely increasing bone strength and stiffness, while ductility
decreased [61,62,68,71]. These rmIGF-1 induced changes in bone composition also include
an increase in collagen maturity of the bone of Pappa2ko/ko females specifically, as this
effect was not observed in Pappa2wt/wt females or Pappa2ko/ko males. Moreover, rmIGF-
1-induced changes in the bone composition of Pappa2ko/ko females was accompanied by
higher expression of Igfbp3 and Igfbp5, suggesting an acute response to increased IGF-1
bioavailability and signaling in a context of Pappa2 deficiency. Interestingly, higher expres-
sion of osteopontin and Col1a1 that was also specifically found in Pappa2ko/ko females after
rmIGF-1 treatment, suggests an up-regulation of bone matrix resorption/formation. In this
case, the concurrence of both higher collagen maturity and increased Col1a1 expression in
the bone of rmIGF-1-treated Pappa2ko/ko females may trigger the correct collagenous matrix
formation that can underlie bone strength [9]. The short-term modulation of bone mineral
composition, the local IGF-1 system and bone remodeling in a sex and genotype-dependent
manner may provide relevant insights into the therapeutic efficacy of recombinant IGF-1.
Indeed, the increased expression of Igfbp3 and Igfbp5 in females with Pappa2 deletion, in
response to rmIGF-1 treatment, may compromise long-term IGF-1 bioavailability. It could
also be associated with an up-regulation of bone remodeling as assessed by increased
expression of osteopotin and Col1a1.

In summary, our results support sex-specific regulation of bone composition and
remodeling by PAPP-A2. Moreover, Pappa2 deletion altered the response to rmIGF-1
treatment, as indicated by parameters of bone mineral content, the local IGF-1 system
and bone resorption/formation, in a sex specific manner. Collectively, our results support
the therapeutic impact of IGF-1 to improve bone strength and density, but suggest that
its clinical efficacy may differ depending on the sex of the patient with postnatal growth
deficiency. However, the scarce experience treating patients with PAPP-A2 deficiency
seems to indicate that both sexes respond adequately to this treatment [28].

4. Materials and Methods

All procedures were conducted in strict adherence to the principles of laboratory ani-
mal care (National Research Council, Neuroscience CoGftUoAi, Research B, 2003) following
the European Community Council Directive (86/609/EEC) and were approved by the
Ethical Committee of the University of Málaga (Ref. [69]—2016H). Special care was taken
to minimize the suffering and number of animals necessary to perform the procedures.

4.1. Animals

Adult male and female mice (C57BL/6 background) with constitutive Pappa2 gene
deletion (Pappa2ko/ko) and littermate controls (Pappa2wt/wt) were generated as previously
described [31]. Mice were housed on a reverse 12-h light/dark cycle (lights off at 8:00 a.m.)
in a humidity and temperature-controlled (22 ± 1 ◦C) vivarium. Standard rodent food and
tap water were available ad libitum. Body weight and body length (including the tail) were
monitored. Mice were genotyped by PCR using ear-clip tissue, as previously described [34].

4.2. Drugs

Recombinant murine IGF-1 (rmIGF-1; cat. no. 250-19; PeproTech, Inc., Rocky Hill,
NJ, USA) was prepared by dissolving in 0.9% saline. The rmIGF-1 solution was injected
subcutaneously once at a dose of 0.3 mg/kg in a volume of 2 mL/kg. Pappa2wt/wt and
Pappa2ko/ko mice (males and females) were sacrificed 30, 120 and 240 min after rmIGF-1
administration. The route, dose and timing were selected based on previous studies of
bone formation in aged mice [72].
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4.3. Sample Collection

Adult mice (8 months of age) were sacrificed by decapitation after the administration
of Equitesin® (3 mg/kg). Both femurs and tibias were extracted, cleaned of adjacent soft
tissue, and immediately frozen in liquid nitrogen. Bones were weighed, and their length
measured using a caliper. Femur epiphysis and metaphysis were removed and diaphysis
were isolated. Frozen bone collections were stored at −80 ◦C until XRD, ATR-FTIR and
RT-qPCR analyses.

4.4. Sample Preparation

Both femur diaphysis per mouse were pooled and pulverized in liquid nitrogen using
a 6770 Freezer Mill (SPEX CertiPrepFreezerMill, Stanmore, London, UK). The cryogenic
milling was carried out under mild conditions (cycles: 2; run time: 2 min; rate: 9 cps) to
avoid altering the crystallinity of the materials or the spectral levels of the compounds
under study. The resulting powder (50–100 µg particle size) was collected (~250 mg) and
kept in a −80◦ freezer until XRD and ATR-FTIR analyses.

4.5. X-ray Powder Diffraction

Each femur diaphysis sample (~100 mg) was analyzed using an Empyrean Malvern
Panalytical automated X-ray diffractometer (Malvern Panalytical, Malvern, United King-
dom) and Rietveld refinement [73–76]. The patterns of sample crystallinity and crys-
tallite size were collected with a step size of 0.017◦ (2θ) and 300 sec/step using Cu-Kα

(λ = 1.540598 Å) radiation from a tube operated at an accelerating voltage of 45 kV and
a current of 35 mA. The (002) peak was baselined from 4◦ to 80◦ (2θ) for 30 min and
fitted with a Lorentzian curve to determine the peak broadening based on its full width
at half maximum (Figure S1A). Identification of amorphous phase and pure crystalline
material was performed with reference to an external standard and the database supplied
by the International Centre for Diffraction Data (Powder Diffraction File no. 84-1998), Inor-
ganic Crystal Structure Database and Crystallography Open Database (COD no. 9010050;
RRID:SCR_005874). Sample crystallinity (the degree of order in a solid) is defined as the
quotient of enthalpy difference between pure amorphous phase and the sample enthalpy
over the difference of pure amorphous and pure crystalline material (external standard).
Percentage of crystallinity is calculated by: (total area of crystalline peaks) · 100/(total
area of crystalline and amorphous peaks). The Scherrer equation (Dv = K · λ/β002 · cosθ)
and Williamson-Hall method were used to calculate crystallite size (LVol-IB, nm); where
Dv is the volume weighted crystallite size, K is the Scherrer constant with a value of 1,
λ is the x-ray wavelength used, and β002 is the integral breadth of the (002) reflection
or length of the apatite crystals along the c-axis. The R-Bragg factor, cell volume, crystal
linear absorbance coefficient (1/cm) and crystal density (g/cm3) were also checked. Three
patterns were performed and a mean pattern was obtained for each sample.

4.6. ATR-FTIR Spectroscopy

The infra-red (IR) analysis of each femur diaphysis sample (~100 mg) was carried out
in a Bruker Vertex 70 Fourier Transform (FT)-IR spectrophotometer (Bruker Corporation,
Billerica, MA, USA). We worked with attenuated total reflectance (ATR) using a Golden
Gate System of Individual Reflection [77–79]. The material of our internal reflection element
was ZnSe (20,000–500 cm−1). For the acquisition of spectra, a standard spectral resolution
of 4 cm−1 in the spectral range of 500–4000 cm−1 was used, as well as 64 accumulations
per sample. The background spectrum in all cases was the air. For the analysis of the raw
spectra, the v1v3PO4

3− bands were baselined from 1200 to 900 cm−1, the v2CO3
2− band

from 890 to 850 cm−1, and the amide I band from 1730 to 1585 cm−1. Spectral analysis was
performed in triplicate and a mean spectrum was obtained for each sample (Figure S1B).
After curve-fitting of every individual (not smoothing) spectrum, position, height and area
under the curves (baseline correction) were measured.
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The following parameters that reflect the bone tissue compositional properties were
calculated [80–82]: (1) Mineral-to-organic matrix (M/M) ratio, an index of tissue min-
eral content that characterizes the relative amount of phosphate per amount of collagen
present, and is calculated by the ratio of the integrated areas of the respective raw peaks
of v1v3PO4

3− (900–1200 cm−1) and amide I (1585–1730 cm−1); (2) carbonate substitution
(C/P ratio), an index of phosphate-to-carbonate-substituted apatites that characterizes
the extent to which carbonate substitutes into mineral lattice, and is calculated by the
ratio of the integrated areas of the respective raw peaks of v2CO3

2− (850–890 cm−1) and
v1v3PO4

3− (900–1200 cm−1); (3) mineral crystallinity or maturity (1030/1020 cm−1 intensity
ratio), a degree of order in a solid that is related to crystal size and perfection; and (4)
collagen maturity (1660/1690 cm−1 intensity ratio), an index related to the ratio of mature,
non-reducible collagen crosslinks to immature, reducible collagen crosslinks. We applied
the second derivatives of the raw data from ATR-FTIR spectra to determine specific peaks
at ~1030, ~1020, ~1660 and ~1690 cm−1, and improve the accuracy of quantification of
mineral maturity and collagen crosslink ratio (Figure S1C).

4.7. RNA Isolation and RT-qPCR Analysis

Frozen tibias were pulverized using a Qiagen TissueLyser II sample disruptor (Qi-
agen, Hilden, Germany). We performed real-time PCR, as described previously [83],
using specific sets of primer probes from TaqMan® Gene Expression Assays (Pappa2:
Mm01284029_m1, amplicon length: 70; Igfbp3: Mm01187817_m1, amplicon length: 78;
Igfbp4: Mm00494922_m1, amplicon length: 76; Igfbp5: Mm00516037_m1, amplicon length:
70; Igfals: Mm01962637_s1, amplicon length: 106; Stc2: Mm00441560_m1, amplicon length:
60; Col1a1: Mm00801666_g1, amplicon length: 89; osteopontin (Opn, Spp1): Mm00436767_m1,
amplicon length: 114; osteocalcin (Bglap): Mm04313826_mH, amplicon length: 110; Ther-
moFisher Scientific, Waltham, MA, USA). The total RNA quantity was extracted from tibias
using the Trizol® method according to the manufacturer’s instructions (ThermoFisher
Scientific, Waltham, MA, USA). Isolated RNA samples were quantified using a spectropho-
tometer to ensure A260/280 ratios of 1.8–2.0. After the reverse transcript reaction from
1 µg of mRNA, a quantitative real-time reverse transcription polymerase chain reaction
(qPCR) was performed in a CFX96TM Real-Time PCR Detection System (Bio-Rad, Hercules,
CA, USA) using FAM (fluorescein amidites) dye labeled format for the TaqMan® Gene
Expression Assays (ThermoFisher Scientific, Waltham, MA, USA). A melting curve analysis
was performed to ensure that only a simple product per replicate was amplified. After ana-
lyzing several reference genes, values obtained from the tibias were normalized in relation
to Actb levels (Mm02619580_g1, amplicon length: 143; ThermoFisher Scientific, Waltham,
MA, USA), which was found not to vary significantly between experimental groups.

4.8. Data Analysis

Data are presented as means ± S.E.M. and the “n” in figure legends indicates the
number of animals per group. Data were normally distributed. For statistical analysis,
we used GraphPad Prism 6.0 (GraphPad Software, San Diego, CA, USA) and IBM SPSS
software 23.0 (SPSS Inc., Chicago, IL, USA) in order to apply two and three-way ANOVA
(genotype, sex and time as factors) followed by Tukey-corrected tests or simple effect
analyses where appropriate. A p < 0.05 indicates statistical significance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22084048/s1, Figure S1: (A) Representative diffractogram of bone hydroxyapatite-
(CaOH) in the femur of Pappa2wt/wt and Pappa2ko/ko mice (males and females) by X-ray powder
diffraction (XRD). (B) Representative ATR-FTIR spectra of the raw data. The typical ATR-FTIR
spectral bands (peaks) that define amide, carbonate and phosphate groups at specific wavenumbers
were obtained. (C) Second derivatives of the ATR-FTIR spectra define the amide I band positions
in the 1585–1730 cm−1 region (left) and the v1v3PO4

3− band positions in the 900–1200 cm−1 region
(right). The peaks at 1660 and 1690 cm−1 (red lines in the left) correspond to the pyridinoline and
dehydrohydroxylysinonorleucine collagen crosslinks, respectively. The respective peaks at ~960,

https://www.mdpi.com/article/10.3390/ijms22084048/s1
https://www.mdpi.com/article/10.3390/ijms22084048/s1


Int. J. Mol. Sci. 2021, 22, 4048 15 of 18

~1020, 1030 and 1115 cm−1 (red lines in the right) correspond to v1PO4
3−, PO4

3− in stoichiometric
apatites, HPO4

2− and/or CO3
2− in nonstoichiometric poorly crystalline apatites and other poorly

crystalline apatites, respectively; Table S1: Quantitative analysis of crystallographic properties of
bone hydroxyapatite-(CaOH) in the femur of Pappa2wt/wt and Pappa2ko/ko mice (males and females)
by XRD; Table S2: Quantitative analysis of spectral levels (actual absorbance) of specific ionic contents
in the femur of Pappa2wt/wt and Pappa2ko/ko mice (males and females).
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