Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = pachytene–diplotene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3508 KiB  
Article
CLPP Depletion Causes Diplotene Arrest; Underlying Testis Mitochondrial Dysfunction Occurs with Accumulation of Perrault Proteins ERAL1, PEO1, and HARS2
by Jana Key, Suzana Gispert, Lieke Koornneef, Esther Sleddens-Linkels, Aneesha Kohli, Sylvia Torres-Odio, Gabriele Koepf, Shady Amr, Marina Reichlmeir, Patrick N. Harter, Andrew Phillip West, Christian Münch, Willy M. Baarends and Georg Auburger
Cells 2023, 12(1), 52; https://doi.org/10.3390/cells12010052 - 22 Dec 2022
Cited by 6 | Viewed by 3657
Abstract
Human Perrault syndrome (PRLTS) is autosomal, recessively inherited, and characterized by ovarian insufficiency with hearing loss. Among the genetic causes are mutations of matrix peptidase CLPP, which trigger additional azoospermia. Here, we analyzed the impact of CLPP deficiency on male mouse meiosis stages. [...] Read more.
Human Perrault syndrome (PRLTS) is autosomal, recessively inherited, and characterized by ovarian insufficiency with hearing loss. Among the genetic causes are mutations of matrix peptidase CLPP, which trigger additional azoospermia. Here, we analyzed the impact of CLPP deficiency on male mouse meiosis stages. Histology, immunocytology, different OMICS and biochemical approaches, and RT-qPCR were employed in CLPP-null mouse testis. Meiotic chromosome pairing and synapsis proceeded normally. However, the foci number of the crossover marker MLH1 was slightly reduced, and foci persisted in diplotene, most likely due to premature desynapsis, associated with an accumulation of the DNA damage marker γH2AX. No meiotic M-phase cells were detected. Proteome profiles identified strong deficits of proteins involved in male meiotic prophase (HSPA2, SHCBP1L, DMRT7, and HSF5), versus an accumulation of AURKAIP1. Histone H3 cleavage, mtDNA extrusion, and cGAMP increase suggested innate immunity activation. However, the deletion of downstream STING/IFNAR failed to alleviate pathology. As markers of underlying mitochondrial pathology, we observed an accumulation of PRLTS proteins ERAL1, PEO1, and HARS2. We propose that the loss of CLPP leads to the extrusion of mitochondrial nucleotide-binding proteins to cytosol and nucleus, affecting late meiotic prophase progression, and causing cell death prior to M-phase entry. This phenotype is more severe than in mito-mice or mutator-mice. Full article
Show Figures

Graphical abstract

12 pages, 22020 KiB  
Article
Nonhomologous Chromosome Interactions in Prophase I: Dynamics of Bizarre Meiotic Contacts in the Alay Mole Vole Ellobius alaicus (Mammalia, Rodentia)
by Sergey Matveevsky, Irina Bakloushinskaya, Valentina Tambovtseva, Maret Atsaeva, Tatiana Grishaeva, Aleksey Bogdanov and Oxana Kolomiets
Genes 2022, 13(12), 2196; https://doi.org/10.3390/genes13122196 - 23 Nov 2022
Cited by 4 | Viewed by 2115
Abstract
Nonhomologous chromosome interactions take place in both somatic and meiotic cells. Prior to this study, we had discovered special contacts through the SYCP3 (synaptonemal complex protein 3) filament between the short arms of nonhomologous acrocentrics at the pachytene stage in the Alay mole [...] Read more.
Nonhomologous chromosome interactions take place in both somatic and meiotic cells. Prior to this study, we had discovered special contacts through the SYCP3 (synaptonemal complex protein 3) filament between the short arms of nonhomologous acrocentrics at the pachytene stage in the Alay mole vole, and these contacts demonstrate several patterns from proximity to the complete fusion stage. Here, we investigated the nonhomologous chromosome contacts in meiotic prophase I. It turned out that such contacts do not introduce changes into the classic distribution of DNA double-strand breaks. It is noteworthy that not all meiotic contacts were localized in the H3k9me3-positive heterochromatic environment. Both in the mid zygotene and in the early–mid diplotene, three types of contacts (proximity, touching, and anchoring/tethering) were observed, whereas fusion seems to be characteristic only for pachytene. The number of contacts in the mid pachytene is significantly higher than that in the zygotene, and the distance between centromeres in nonhomologous contacts is also the smallest in mid pachytene for all types of contacts. Thus, this work provides a new insight into the behavior of meiotic contacts during prophase I and points to avenues of further research. Full article
(This article belongs to the Special Issue Chromosome Evolution and Karyotype Analysis)
Show Figures

Figure 1

17 pages, 1709 KiB  
Article
DNA Environment of Centromeres and Non-Homologous Chromosomes Interactions in Mouse
by Victor Spangenberg, Mikhail Losev, Ilya Volkhin, Svetlana Smirnova, Pavel Nikitin and Oxana Kolomiets
Cells 2021, 10(12), 3375; https://doi.org/10.3390/cells10123375 - 1 Dec 2021
Cited by 9 | Viewed by 5032
Abstract
Although the pericentromeric regions of chromosomes that are enriched in tandemly repeated satellite DNA represent a significant part of eukaryotic genomes, they remain understudied, which is mainly due to interdisciplinary knowledge gaps. Recent studies suggest their important role in genome regulation, karyotype stability, [...] Read more.
Although the pericentromeric regions of chromosomes that are enriched in tandemly repeated satellite DNA represent a significant part of eukaryotic genomes, they remain understudied, which is mainly due to interdisciplinary knowledge gaps. Recent studies suggest their important role in genome regulation, karyotype stability, and evolution. Thus, the idea of satellite DNA as a junk part of the genome has been refuted. The integration of data regarding molecular composition, chromosome behaviour, and the details of the in situ organization of pericentromeric regions is of great interest. The objective of this work was a cytogenetic analysis of the interactions between pericentromeric regions from non-homologous chromosomes in mouse spermatocytes using immuno-FISH. We analysed two events: the associations between centromeric regions of the X chromosome and autosomes and the associations between the centromeric regions of the autosomal bivalents that form chromocenters. We concluded that the X chromosome forms temporary synaptic associations with different autosomes in early meiotic prophase I, which can normally be found until the pachytene–diplotene, without signs of pachytene arrest. These associations are formed between the satellite-DNA-rich centromeric regions of the X chromosome and different autosomes but do not involve the satellite-DNA-poor centromeric region of the Y chromosome. We suggest the hypothetical model of X chromosome competitive replacement from such associations during synaptic correction. We showed that the centromeric region of the X chromosome in association remains free of γH2Ax-dependent chromatin inactivation, while the Y chromosome is completely inactivated. This finding highlights the predominant role of associations between satellite DNA-rich regions of different chromosomes, including the X chromosome. We suppose that X-autosomal transient associations are a manifestation of an additional synaptic disorder checkpoint. These associations are normally corrected before the late diplotene stage. We revealed that the intense spreading conditions that were applied to the spermatocyte I nuclei did not lead to the destruction of stretched chromatin fibers of elongated chromocenters enriched in satellite DNA. The tight associations that we revealed between the pericentromeric regions of different autosomal bivalents and the X chromosome may represent the basis for a mechanism for maintaining the repeats stability in the autosomes and in the X chromosome. The consequences of our findings are discussed. Full article
Show Figures

Figure 1

17 pages, 2260 KiB  
Article
X Chromosome Inactivation during Grasshopper Spermatogenesis
by Alberto Viera, María Teresa Parra, Sara Arévalo, Carlos García de la Vega, Juan Luis Santos and Jesús Page
Genes 2021, 12(12), 1844; https://doi.org/10.3390/genes12121844 - 23 Nov 2021
Cited by 7 | Viewed by 4364
Abstract
Regulation of transcriptional activity during meiosis depends on the interrelated processes of recombination and synapsis. In eutherian mammal spermatocytes, transcription levels change during prophase-I, being low at the onset of meiosis but highly increased from pachytene up to the end of diplotene. However, [...] Read more.
Regulation of transcriptional activity during meiosis depends on the interrelated processes of recombination and synapsis. In eutherian mammal spermatocytes, transcription levels change during prophase-I, being low at the onset of meiosis but highly increased from pachytene up to the end of diplotene. However, X and Y chromosomes, which usually present unsynapsed regions throughout prophase-I in male meiosis, undergo a specific pattern of transcriptional inactivation. The interdependence of synapsis and transcription has mainly been studied in mammals, basically in mouse, but our knowledge in other unrelated phylogenetically species is more limited. To gain new insights on this issue, here we analyzed the relationship between synapsis and transcription in spermatocytes of the grasshopper Eyprepocnemis plorans. Autosomal chromosomes of this species achieve complete synapsis; however, the single X sex chromosome remains always unsynapsed and behaves as a univalent. We studied transcription in meiosis by immunolabeling with RNA polymerase II phosphorylated at serine 2 and found that whereas autosomes are active from leptotene up to diakinesis, the X chromosome is inactive throughout meiosis. This inactivation is accompanied by the accumulation of, at least, two repressive epigenetic modifications: H3 methylated at lysine 9 and H2AX phosphorylated at serine 139. Furthermore, we identified that X chromosome inactivation occurs in premeiotic spermatogonia. Overall, our results indicate: (i) transcription regulation in E. plorans spermatogenesis differs from the canonical pattern found in mammals and (ii) X chromosome inactivation is likely preceded by a process of heterochromatinization before the initiation of meiosis. Full article
(This article belongs to the Special Issue Sex Chromosome Evolution and Meiosis)
Show Figures

Graphical abstract

26 pages, 4402 KiB  
Article
Meiotic Nuclear Architecture in Distinct Mole Vole Hybrids with Robertsonian Translocations: Chromosome Chains, Stretched Centromeres, and Distorted Recombination
by Sergey Matveevsky, Artemii Tretiakov, Anna Kashintsova, Irina Bakloushinskaya and Oxana Kolomiets
Int. J. Mol. Sci. 2020, 21(20), 7630; https://doi.org/10.3390/ijms21207630 - 15 Oct 2020
Cited by 11 | Viewed by 3220
Abstract
Genome functioning in hybrids faces inconsistency. This mismatch is manifested clearly in meiosis during chromosome synapsis and recombination. Species with chromosomal variability can be a model for exploring genomic battles with high visibility due to the use of advanced immunocytochemical methods. We studied [...] Read more.
Genome functioning in hybrids faces inconsistency. This mismatch is manifested clearly in meiosis during chromosome synapsis and recombination. Species with chromosomal variability can be a model for exploring genomic battles with high visibility due to the use of advanced immunocytochemical methods. We studied synaptonemal complexes (SC) and prophase I processes in 44-chromosome intraspecific (Ellobius tancrei × E. tancrei) and interspecific (Ellobius talpinus × E. tancrei) hybrid mole voles heterozygous for 10 Robertsonian translocations. The same pachytene failures were found for both types of hybrids. In the intraspecific hybrid, the chains were visible in the pachytene stage, then 10 closed SC trivalents formed in the late pachytene and diplotene stage. In the interspecific hybrid, as a rule, SC trivalents composed the SC chains and rarely could form closed configurations. Metacentrics involved with SC trivalents had stretched centromeres in interspecific hybrids. Linkage between neighboring SC trivalents was maintained by stretched centromeric regions of acrocentrics. This centromeric plasticity in structure and dynamics of SC trivalents was found for the first time. We assume that stretched centromeres were a marker of altered nuclear architecture in heterozygotes due to differences in the ancestral chromosomal territories of the parental species. Restructuring of the intranuclear organization and meiotic disturbances can contribute to the sterility of interspecific hybrids, and lead to the reproductive isolation of studied species. Full article
(This article belongs to the Special Issue Structural Variability and Flexibility of the Genome)
Show Figures

Figure 1

22 pages, 1102 KiB  
Article
Role of Polycomb Group Protein Cbx2/M33 in Meiosis Onset and Maintenance of Chromosome Stability in the Mammalian Germline
by Claudia Baumann and Rabindranath De La Fuente
Genes 2011, 2(1), 59-80; https://doi.org/10.3390/genes2010059 - 11 Jan 2011
Cited by 24 | Viewed by 10593
Abstract
Polycomb group proteins (PcG) are major epigenetic regulators, essential for establishing heritable expression patterns of developmental control genes. The mouse PcG family member M33/Cbx2 (Chromobox homolog protein 2) is a component of the Polycomb-Repressive Complex 1 (PRC1). Targeted deletion of Cbx2/M33 in mice [...] Read more.
Polycomb group proteins (PcG) are major epigenetic regulators, essential for establishing heritable expression patterns of developmental control genes. The mouse PcG family member M33/Cbx2 (Chromobox homolog protein 2) is a component of the Polycomb-Repressive Complex 1 (PRC1). Targeted deletion of Cbx2/M33 in mice results in homeotic transformations of the axial skeleton, growth retardation and male-to-female sex reversal. In this study, we tested whether Cbx2 is involved in the control of chromatin remodeling processes during meiosis. Our analysis revealed sex reversal in 28.6% of XY−/− embryos, in which a hypoplastic testis and a contralateral ovary were observed in close proximity to the kidney, while the remaining male mutant fetuses exhibited bilateral testicular hypoplasia. Notably, germ cells recovered from Cbx2(XY−/−) testes on day 18.5 of fetal development exhibited premature meiosis onset with synaptonemal complex formation suggesting a role for Cbx2 in the control of meiotic entry in male germ cells. Mutant females exhibited small ovaries with significant germ cell loss and a high proportion of oocytes with abnormal synapsis and non-homologous interactions at the pachytene stage as well as formation of univalents at diplotene. These defects were associated with failure to resolve DNA double strand breaks marked by persistent gH2AX and Rad51 foci at the late pachytene stage. Importantly, two factors required for meiotic silencing of asynapsed chromatin, ubiquitinated histone H2A (ubH2A) and the chromatin remodeling protein BRCA1, co-localized with fully synapsed chromosome axes in the majority of Cbx2(−/−) oocytes. These results provide novel evidence that Cbx2 plays a critical and previously unrecognized role in germ cell viability, meiosis onset and homologous chromosome synapsis in the mammalian germline. Full article
(This article belongs to the Special Issue Genetics of Mammalian Meiosis)
Show Figures

Graphical abstract

Back to TopTop