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Abstract: Polycomb group proteins (PcG) are major epigenetic regulators, essential for 

establishing heritable expression patterns of developmental control genes. The mouse PcG 

family member M33/Cbx2 (Chromobox homolog protein 2) is a component of the  

Polycomb-Repressive Complex 1 (PRC1). Targeted deletion of Cbx2/M33 in mice results 

in homeotic transformations of the axial skeleton, growth retardation and male-to-female 

sex reversal. In this study, we tested whether Cbx2 is involved in the control of chromatin 

remodeling processes during meiosis. Our analysis revealed sex reversal in 28.6% of  

XY
−/−

 embryos, in which a hypoplastic testis and a contralateral ovary were observed in 

close proximity to the kidney, while the remaining male mutant fetuses exhibited bilateral 

testicular hypoplasia. Notably, germ cells recovered from Cbx2
(XY−/−)

 testes on day 18.5 of 

fetal development exhibited premature meiosis onset with synaptonemal complex 

formation suggesting a role for Cbx2 in the control of meiotic entry in male germ cells. 

Mutant females exhibited small ovaries with significant germ cell loss and a high 

proportion of oocytes with abnormal synapsis and non-homologous interactions at the 

pachytene stage as well as formation of univalents at diplotene. These defects were 

associated with failure to resolve DNA double strand breaks marked by persistent H2AX 

and Rad51 foci at the late pachytene stage. Importantly, two factors required for meiotic 
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silencing of asynapsed chromatin, ubiquitinated histone H2A (ubH2A) and the chromatin 

remodeling protein BRCA1, co-localized with fully synapsed chromosome axes in the 

majority of Cbx2
(−/−) 

oocytes. These results provide novel evidence that Cbx2 plays a 

critical and previously unrecognized role in germ cell viability, meiosis onset and 

homologous chromosome synapsis in the mammalian germline. 

Keywords: oogenesis; pericentric heterochromatin; epigenetic modifications; chromatin 

remodeling; retinoic acid; sex determination 

 

1. Introduction 

In all sexually reproducing organisms, germ cells have the monumental task of transmitting genetic 

information through subsequent generations. Primordial germ cells (PGCs) must undergo epigenetic 

reprogramming, meiotic recombination and two subsequent chromosomal divisions in order to give 

rise to mature haploid sperm or eggs. Following colonization of the genital ridge (day 12.5 post coitum 

in mice), PGCs undergo two or three mitotic divisions before proceeding into a final round of DNA 

replication and entering a pre-meiotic stage [1,2]. In fetal female germ cells, the transition from 

mitosis to meiosis ensues approximately on day 14.5 post coitum (pc) and is characterized by a 

retinoic acid-dependent up regulation of meiosis-specific genes, including the synaptonemal complex 

protein 3 (SYCP3), followed by striking changes in chromosome configuration. In direct contrast, 

meiosis is not initiated in the male germline until shortly before puberty. This meiotic arrest in the 

male is mediated by secretion of the retinoid metabolizing enzyme CYP26B1 from Sertoli cells which 

promotes degradation of retinoic acid (RA) produced by the mesonephros [1,3,4]. 

Although it is well established that RA of somatic origin is the predominant metabolic influence in 

triggering meiosis onset, germ cell-intrinsic factors such as the RNA-binding protein DAZL are also 

critical for the transition from mitosis to meiosis by promoting transcriptional activation of Stra8 

(stimulated by retinoic acid 8) [5]. Importantly, the unique chromatin conformation in mammalian 

germ cells and/or germline-specific histone posttranslational modifications may also underlie the 

specific actions of RA in both male and female germ cells [6,7]  

Extensive changes in chromatin modifications are critical from the earliest stages of primordial 

germ cell differentiation. Global genome reprogramming events may also be dependent on signaling 

molecules from the surrounding somatic cells of the embryonic gonad [8–11]. Chromatin remodeling 

in the germline is essential to modulate chromosome structure and, hence, for the establishment of 

proper homologous chromosome synapsis [12–14]. Notably, biochemical analyses as well as several 

genetic mouse models support the existence of critical factors that might be exclusively involved in the 

control of germline-specific epigenetic modifications essential for the successful completion of meiotic 

prophase I in the female as well as the male germline [15,16]. However, the role of epigenetic 

modifications in meiosis onset is less clear.  

The Polycomb group (PcG) proteins are a family of transcriptional repressors that form large  

multi-protein complexes, which exert their function through the modulation of higher order chromatin 

structure [17]. The mouse Polycomb protein M33 and its human homolog CBX2 are members of the 
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Polycomb repressive complex 1 (PRC1). Mutations in the Cbx2/M33 gene induce a range of 

congenital birth defects such as transformations of the axial skeleton associated with premature 

homeotic (Hox) gene expression [18,19], in addition to severe abnormalities in sexual development 

including male to female sex reversal in humans [20] and mice [18,21]. Despite the impact of CBX2 

mutations on human health, little is known regarding the molecular and/or epigenetic factors that 

predispose the mammalian gonad to abnormalities of sexual differentiation. Moreover, the potential 

role of Cbx2/M33 in the modulation of large-scale chromatin structure during meiosis remains largely 

unexplored. In this study, we show that functional ablation of Cbx2 protein results in precocious 

meiotic onset in fetal male germ cells as well as a spectrum of meiotic defects in female germ cells. 

Our results support an essential role for Cbx2 in germ cell development as well as the establishment of 

homologous chromosome synapsis during meiosis. Importantly, the meiotic phenotype observed in 

mutant fetal testicular germ cells indicates that Cbx2 plays a critical role in antagonizing the effects of 

retinoic acid on meiotic onset and is required for maintenance of the pre-meiotic arrest of fetal male 

germ cells in mammals.  

2. Results and Discussion 

2.1. Loss of Cbx2 Function Causes Gonadal Growth Retardation and Male-to-Female Sex Reversal on 

a BALB/C Genetic Background 

Male-to-female sex reversal has been previously reported in a Cbx2 mutant mouse model 

established on the C57BL/6Njcl (B6) genetic background [21]. These mice carry an insertion of a 

neomycin cassette in exon 5 of the Cbx2 coding sequence resulting in deletion of the C-terminal 

portion of the Cbx2 protein. Although expected Mendelian inheritance patterns were observed at birth, 

postnatal lethality affected up to 60% of the mutant offspring before 5–6 weeks of age. In this strain, 

all surviving chromosomally male Cbx2
(XY−/−)

 mice exhibited male to female sex reversal with female 

or intersex-type external genitalia. In addition, the internal reproductive organs consisted of bilateral 

ovaries containing follicles in 50% of males as well as the presence of both an ovary and a 

contralateral testis in 25% of mutant males [21].  

Abnormalities of sex differentiation have also been reported in an alternative Cbx2 knockout mouse 

model generated on a BALB/C genetic background [18,21]. However, the extent of phenotypic sex 

reversal observed in this model is not known. Previous studies have documented striking differences in 

the level of sensitivity to phenotypic sex reversal amongst different mouse strains and genetic 

backgrounds [22]. Therefore, we set out to determine the type and severity of gonadal defects observed 

in BALB/C Cbx2
(−/−)

 knockout mice. This model [18] involved the targeted deletion of the  

5' untranslated region including the translation start site and the first four exons of the Cbx2 coding 

sequence leading to a null mutation of the Cbx2 protein. The majority of Cbx2
(−/−)

 mice in this model 

show neonatal lethality within hours after birth likely due to proliferative defects in several cell types 

and homeotic transformations [23].  

Mice heterozygous for Cbx2 (Cbx2
(+/−)

) are viable and fertile and fetuses recovered on day 18.5 

post coitum from heterozygous matings revealed a normal ratio of Cbx2
(+/+)

/Cbx2
(+/−)

/Cbx2
(−/−)

 

genotypes of 31:69:33 (Figure 1A). The chromosomal sex of all 18.5 day post coitum (dpc) fetuses 
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was determined by the presence or absence of Sry gene sequences as detected by PCR. 

Chromosomally female fetuses from all genotypes (n = 66) contained bilateral ovaries (Figure 1 A–C). 

However, Cbx2
(XX−/−)

 females exhibited small ovaries (Figure 1C) compared to control Cbx2
(XX+/+)

 

females (Figure 1B). Importantly, in contrast to wild type controls (Figure 1D; n = 14) chromosomally 

male Cbx2
(XY−/−)

 mutant fetuses (n = 14) exhibited severe testicular growth retardation accompanied 

by impaired formation of testicular cords and in extreme cases unilateral sex reversal as reflected by 

the presence of a hypoplastic testis and a contralateral ovary in 28.6% of Cbx2
(XY−/−)

 fetuses 

(Figure 1E). As expected, the reproductive tracts obtained from wild type controls (Figure 1D) always 

exhibited bilateral testes at a caudal position towards the inguinal region. However, although the size 

and morphological appearance of the epididymis was similar to wild type controls, both the testis and 

adjacent epididymis remained in close proximity to the kidneys in Cbx2
(XY−/−)

 mutant fetuses 

(Figure 1E). Histological examination on day 18.5 pc confirmed a reduction in the size and number of 

testicular cords in Cbx2
(XY−/−)

 mutant males presenting bilateral testes as well as in the testis of mutant 

males showing unilateral sex reversal compared to wild type controls Cbx2
(XY+/+)

 (Figure 1F). Growth 

retardation and germ cell loss was apparent in both, testes (Figure 1F) as well as ovaries (Figure 1G) 

from Cbx2
(XY−/−)

 mutants compared to wild type gonads. Similarly, histological sections obtained from 

Cbx2
(XX−/−)

 females confirmed the presence of small ovaries compared to controls (Figure 1G).  

These results indicate that, in addition to its role in sex determination, Cbx2 plays an important role 

in germ cell viability during fetal development. Importantly, our study reveals major differences in the 

sex reversal phenotype of Cbx2 knockout mice generated on the BALB/C genetic background [18] 

compared to the phenotype described in Cbx2 deficient mice on the C57BL/6Njcl (B6) 

background [21]. For example, the majority of Cbx2 null mice on the B6 background exhibit male to 

female sex reversal and approximately 50% of surviving adult mice exhibited bilateral ovaries. 

However, none of the knockout males analyzed contained bilateral testes [21]. In contrast, our study 

reveals that in the BALB/C model <30% of mice exhibit sex reversal. This is consistent with previous 

studies indicating an extreme sensitivity of the B6 background to genetic perturbations of the sex 

determination pathway due to higher levels of expression for several genes associated with female 

gonadal differentiation [22,24]. Interestingly, the majority of affected males in the BALB/C model 

exhibit bilateral testis and mutant females presented fully differentiated ovaries, making this strain 

uniquely suited for the analysis of the functional ablation of Cbx2 in mammalian germ cells during the 

critical window of epigenetic reprogramming and the mitotic to meiotic transition in the germline. 

These results provide the first evidence indicating a role for Cbx2 in germ cell development. 

2.2. Premature Meiosis Onset in Fetal Cbx2
(XY−/−)

 Testicular Germ Cells 

Next, we determined whether lack of Cbx2 function in the mammalian germline is associated with 

abnormal chromatin-related events during meiosis. Analysis of meiotic configurations on surface 

spread oocytes obtained on day 18.5 pc from the ovaries of Cbx2
(XY−/−)

 males exhibiting unilateral sex 

reversal revealed abnormal homologous chromosome synapsis involving one or two bivalents as well 

as several chromosome fragments as determined by synaptonemal complex staining with an  

anti-SYCP3 antibody (Figure 2A; red). Notably, phosphorylated histone H2AX (-H2AX) remained 

associated with the asynapsed X chromosome and, to a lesser extent, with the Y chromosome (Figure 
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2A; green). Immuno-FISH experiments using sex chromosome-specific paint probes revealed that in 

>80% of Cbx2
(XY−/−)

 oocytes the X (green, arrow) and Y (red, arrowhead) chromosomes fail to 

undergo partial synapsis (Figure 2B). Moreover, although H2AX was found associated with the sex 

chromosomes in the remaining mutant oocytes that exhibited sex chromosome pairing, a typical XY 

body was not detectable (Figure 2C, D). These results indicate that XY oocytes from sex reversed 

Cbx2 null gonads exhibit meiotic abnormalities in the form of chromosome breaks in addition to the 

lack of synapsis of the sex chromosomes.  

Figure 1. Targeted deletion of Cbx2 leads to sex reversal and gonadal hypoplasia.  

(A) Correlation between genotype, phenotype and chromosomal sex in fetal offspring of 

heterozygous (Cbx2
(+/−)

) intercrosses; (B) Gonadal differentiation in a female wild type 

fetus on day 18.5 pc; (C) Stage-matched Cbx2
(XX−/−)

 mutant fetus showing ovarian 

hypoplasia; (D) Anatomic disposition and testicular morphology in a male Cbx2
(XY+/+)

 

control fetus with prominent testis cord development; (E) Sex reversal in a Cbx2
(XY−/−)

 

male containing both a small ovary as well as a contralateral small testis; (F) Wild type 

fetuses exhibit well-developed testicular cords. In contrast, mutant Cbx2
(XY−/−)

 fetuses with 

bilateral testicular hypoplasia as well as intersex embryos show poor definition of tubular 

structures; (G) Ovarian histology in control ovaries reveals numerous oocytes in meiosis 

(arrows). In contrast, mutant gonads show reduced meiotic germ cell numbers and hypoplasia. 
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Surprisingly, our studies also revealed that germ cells obtained from the contralateral testis of 

Cbx2
(XY−/−) 

male fetuses on day 18.5 pc undergo precocious entry into meiosis demonstrated by bona 

fide synaptonemal complex formation and a chromosome configuration consistent with the zygotene 

stage of meiosis with asynapsed chromosomes and diffuse H2AX staining (not shown). Strikingly, 

premature meiotic germ cells were also present in Cbx2
(XY−/−)

 mutant males with bilateral testes, albeit 

at less advanced stages of prophase I compared to XY ovarian oocytes (Figure 2E, F). These results 

indicate that Cbx2 plays a critical role in the pathway responsible for the pre-meiotic arrest in the 

mammalian male germline. Abnormal chromosome synapsis in Cbx2
(XY−/−)

 mutants suggests, 

moreover, a role for Cbx2 in meiotic chromosome synapsis in the male germline. However, whether 

chromosome synapsis and XY body formation are affected in Cbx2
(XY−/−)

 spermatocytes undergoing 

precocious meiosis remains to be investigated. 

Figure 2. Precocious meiosis onset in Cbx2
(XY−/−)

 fetal gonads. (A) Cbx2
(XY−/−)

 oocyte 

recovered from an ovary of a unilaterally sex reversed embryo showing completely 

asynapsed sex chromosomes and persistent γH2AX staining associated with the  

X chromosome; (B) The position of the X (green, arrow) and the Y (red, arrowhead) 

chromosome is shown; (C, D) Partial synapsis of the sex chromosomes associated with 

abundant γH2AX signals (green) at sex chromatin and autosomes in a Cbx2
(XY−/−)

 oocyte at 

the late zygotene-early pachytene stage; (E, F) Evidence for precocious onset of meiotic 

prophase I in fetal testicular germ cells obtained from a Cbx2
(XY−/−)

 embryo with bilateral 

testes. Synaptonemal complexes at meiotic chromosome cores are labeled with SYCP3 

(red) and γH2AX staining (green). DNA is shown in blue. Scale bar = 10 m. 
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Our results are consistent with previous studies on the meiotic prophase configuration in XY 

oocytes obtained from the XY
tdym1

 mouse strain, in which only 19% of oocytes exhibit partial synapsis 

of the sex chromosomes with no apparent sex body formation. Interestingly, in this model, histone 

posttranslational modifications such as ubiquitinated H2A remained associated with the  

X chromosome in 50% of oocytes [25]. However, the functional significance of these histone 

modifications for transcriptional silencing of the sex chromosomes in XY oocytes requires  

further investigation.  

Notably, the identification of fetal male germ cells with precocious synaptonemal complex 

formation and a zygotene-like configuration on day 18.5 pc constitutes the first evidence indicating 

that Cbx2 may play a critical role in maintenance of the pre-meiotic arrest in fetal male germ cells. 

Previous studies elegantly demonstrated that treatment of embryonic testes with retinoic acid agonists 

or inhibitors of the RA metabolizing enzyme CYP26 induce premature Stra8 expression in cultured 

male gonads [3,4]. In addition, treatment of fetal testis with the histone deacetylase inhibitor TSA 

induced Stra8 expression and SYCP3-positive staining on histological sections [7]. However, the 

presence of meiotic figures in these experimental systems remained to be demonstrated. Our results 

show for the first time that in the absence of Cbx2 function, fetal testicular germ cells prematurely 

transit into meiosis and exhibit synaptonemal complex formation, albeit at a lower frequency 

compared to ovarian germ cells. Results obtained following exposure of fetal testes to histone 

deacetylase inhibitors suggest that, in addition to the stimulus provided by RA, epigenetic mechanisms 

might also contribute to prevent premature meiosis onset in the male germline [7]. Interestingly, 

valproic acid, a specific inhibitor of histone deacetylases, has been recently shown to reduce the 

expression of Cbx2 transcripts in mouse embryos on day 8 pc [26]. This suggests that the role of Cbx2 

in modulating large-scale chromatin structure may be critical for antagonizing the potential effects of 

retinoic acid exposure on premature meiotic entry in the male germline. In support of this notion, 

previous studies indicate that Cbx2 is essential to control the developmental window of responsiveness 

to retinoic acid during fetal development [19]. 

2.3. Loss of Cbx2 Results in Abnormal Chromosome Synapsis and Structural Damage of Meiotic 

Chromosomes in Female Germ Cells 

Cbx2 associates with pericentric heterochromatin domains during mitosis in both murine somatic 

and embryonic stem cells. The protein also localizes to facultative heterochromatin at the inactive  

X chromosome suggesting a potential role in heterochromatin formation [27–29]. However, whether 

Polycomb group proteins, such as Cbx2, play a role in meiotic chromosome synapsis in the female 

germline is not known. Therefore, we undertook a detailed analysis of meiotic synapsis and 

recombination events in Cbx2 mutant oocytes. The dynamics of chromosome synapsis was determined 

following simultaneous staining of the lateral elements with SYCP3 (red) as well as the central 

elements of the synaptonemal complex with SYCP1 (green). At the pachytene stage, 80% of wild type 

oocytes (n = 90) exhibited fully synapsed chromosome bivalents (Figure 3A arrow, C). In contrast, 

mutant oocytes (n = 71) exhibited a significant increase in the incidence (57%) of abnormal synapsis 

(Figure 3B, arrowhead) and Figure 3C. Moreover, chromosomal associations between two partially 

synapsed bivalents, indicative of non-homologous chromosome interactions (arrows), were commonly 

observed in >30% of Cbx2
(XX−/−)

 oocytes (Figure 3B, C). These results indicate a previously 
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unrecognized role of Cbx2 in chromosome pairing and homologous chromosome synapsis in female 

germ cells. 

Figure 3. Abnormal synapsis and non-homologous chromosome interactions in Cbx2
(XX−/−)

 

mutant oocytes. (A) Chromosome synapsis (arrow) in control oocytes at the pachytene 

stage showing complete co-localization of lateral (SYCP3, red) and central (SYCP1, 

green) elements of the synaptonemal complex; (B) Stage-matched Cbx2
(XX−/−)

 oocyte 

presenting abnormal synapsis (arrowhead), non-homologous chromosome interactions 

between two partially synapsed bivalents (arrows) as well as structural damage in the form 

of prominent chromosome breaks (asterisk). DNA is shown in blue; (C) Proportions of 

pachytene stage oocytes obtained from control and mutant fetuses on day 18.5 pc showing 

incomplete chromosome synapsis and non-homologous interactions. Scale bar = 10 m. 

 

 

2.3.1. Persistence of DNA Double Strand Breaks and Early Recombination Intermediates at the 

Pachytene Stage in Cbx2
(XX−/−)

 Oocytes  

Initiation of programmed DNA double strand breaks (DSBs) during leptotene stage of meiosis is 

marked by a striking accumulation of the phosphorylated form of the histone variant H2AX (γH2AX), 

which is required for the recruitment of factors involved in the repair of DSBs during chromosome 

synapsis [30–32]. Following resolution of DSBs at the pachytene stage, persistent γH2AX marks the 

majority of asynapsed chromosomes or chromosome segments and its presence in fully synapsed 

bivalents has been associated with structural chromosome damage [33,34]. Therefore, we set out to 

determine the patterns of γH2AX nuclear localization in Cbx2 mutant oocytes at the pachytene and 

diplotene stage. Our analysis revealed that γH2AX was undetectable in fully synapsed chromosomes 
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in the majority (87%) of control oocytes (n = 229) at the pachytene stage (Figure 4A, B, I). In contrast, 

a spectrum of meiotic abnormalities was detected in Cbx2
(XX−/−)

 mutant oocytes (n = 162). For 

example, γH2AX (green) was observed in chromosome bivalents showing full synapsis and/or axial 

gaps in the synaptonemal complex (red) in 12.3% (p < 0.05) of mutant germ cells (Figure 4C, D and I) 

consistent with the presence of structural chromosome damage. Moreover, pronounced γH2AX signals 

were also detected at asynapsed chromosomes in 56.7% (p < 0.05) of mutant oocytes (Figure 4I). This 

observation was further substantiated by X chromosome-specific FISH analyses indicating the 

persistence of γH2AX at X chromosome univalents in a subpopulation of Cbx2 deficient oocytes at the 

diplotene stage (Figure 4E, F). However, we also found evidence for the presence of X chromosome 

univalents with no H2AX staining suggesting that these chromosomes failed to remain bound by 

chiasmata at the diplotene stage following initial synapsis and resolution of DSBs at the pachytene 

stage (Figure 4G, H).  

The recombination intermediate Rad51 is a bona fide marker of DSB formation at recombination 

nodules in meiotic chromosomes during the zygotene stage. However, Rad51 becomes progressively 

dissociated from crossover sites following resolution of DSBs and homologous chromosome synapsis 

at the pachytene stage [35,36]. As expected, Rad51 foci were undetectable in the majority of wild type 

oocytes showing full synapsis of homologous chromosomes at the pachytene stage (n = 101), 

suggesting a timely repair of DSBs (Figure 5, upper panel). In contrast, >56% of mutant oocytes (n = 

139) presented Rad51 foci (green) associated with asynapsed chromosomes (Figure 5, lower panel, 

thin arrow). Notably, >41% of these mutant oocytes showed additional persistent Rad51 foci at 

synapsed bivalents exhibiting axial gaps in the synaptonemal complex (arrowhead) as well as 

segments of incomplete synapsis (bold arrow) demonstrating that loss of Cbx2 function interferes not 

only with proper homologous chromosome synapsis but also with the timely resolution of DSBs.  

2.3.2. Activation of the Meiotic Silencing of Unpaired Chromatin (MSUC) Pathway in Cbx2
(XX−/−)

 Oocytes 

The presence of unrepaired DSBs associated with incomplete chromosome synapsis signals the 

activation of a specialized transcriptional silencing pathway. Meiotic silencing of unsynapsed 

chromatin (MSUC) is an essential mechanism that recruits the tumor suppressor protein BRCA1 and 

the histone variant ubiquitinated H2A (ubH2A) to sites of abnormal chromosome synapsis in both 

female and male germ cells [25,37]. Intriguingly, recent studies have suggested that members of the 

Polycomb repressive complex 1 (PRC1) as well as the E3 ubiquitin ligases RNF8/RNF168 are 

required for monoubiquitination of H2A at lysine 119 in somatic cells [38–45]. In order to address 

whether MSUC is properly initiated in oocytes lacking Cbx2 function, we assessed the sub-nuclear 

localization patterns of BRCA1 (green) and ubH2A (red) in Cbx2
(XX−/−)

 mutant oocytes. While 

BRCA1 was undetectable in fully synapsed chromosomes of oocytes recovered from control fetuses 

(Figure 6A, upper panel), Cbx2
(XX−/−)

 mutant oocytes showed prominent associations of BRCA1 in one 

or two fully synapsed bivalents (arrow). In contrast, BRCA1 was also present as small foci on several 

incompletely synapsed chromosomes (arrowhead) indicating activation of the MSUC response 

pathway. Similarly, no ubH2A labeling (red) was observed in fully synapsed bivalents of control 

oocytes at the pachytene or diplotene stage (Figure 6B). In striking contrast, ubH2A (red) was  

co-localized with asynapsed chromosome axes (green) in the majority of mutant oocytes at the 
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pachytene stage (Figure 6C, upper panel, arrows) and also persisted at fully synapsed chromosome 

bivalents (Supplemental Figure S1) as well as desynapsed chromosome cores during diplotene stage 

(Figure 6C, lower panel, arrow). These results indicate that loss of Cbx2 function in the female 

germline does not preclude activation of the cellular MSUC response. However, evidence suggests that 

extensive chromosome asynapsis in a subset of mutant oocytes results in focal BRCA1 staining instead 

of a uniform accumulation of BRCA1 throughout the length of the meiotic chromosome core 

indicative of an impaired activation of the MSUC response (Supplemental Figure S2), which is in 

agreement with recent studies indicating that excessive asynapsis depletes the available BRCA1 

protein pool leading to an attenuation of the MSUC response [30,46].  

Figure 4. Persistence of H2AX phosphorylation and presence of univalent chromosomes 

in Cbx2
(XX−/−)

 oocytes. (A) Late pachytene oocyte obtained from a control Cbx2
(XX+/+)

 

ovary on day 18.5 pc exhibiting complete chromosome synapsis (20 bivalents). Note the 

absence of γH2AX staining; (B) The position of the X chromosome bivalent (white) is 

indicated; (C, D) Mutant oocyte exhibiting a chromosome bivalent with axial gaps in the 

synaptonemal complex decorated by γH2AX staining (green) suggesting the presence of 

structural chromosome damage (arrow); (E, F) Persistence of H2AX phosphorylation 

(green) in Cbx2
(XX−/−)

 oocytes showing failure to resolve DSBs at X chromosome 

univalents (arrows); (G, H) Cbx2
(XX−/−)

 oocyte at diplotene stage exhibiting γH2AX 

staining at asynapsed chromosomes (arrow). Note the presence of X chromosome 

univalents and non-homologous associations lacking γH2AX foci (arrowhead). 

Synaptonemal complexes are labeled with SYCP3 (red) and DNA is shown in blue. The 

position of the X chromosomes is marked with (X); (I) Proportion of mutant oocytes 

exhibiting abnormal γH2AX patterns. Scale bars = 10 m. 
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Figure 5. Rad51 foci associate with asynapsed chromosomes and chromosome segments 

in Cbx2 mutant oocytes. Complete meiotic chromosome synapsis in control oocytes is 

associated with the timely resolution of DSBs and lack of Rad51 foci at the pachytene 

stage (upper panel). In Cbx2
(XX−/−)

 mutant oocytes non-homologous and incomplete 

chromosome synapsis leads to persistence of Rad51 foci (green, arrow, thin arrow) on 

meiotic chromosome axes (lower panel). Moreover, Rad51 foci are also retained at 

chromosome cores that appear fully synapsed but exhibit axial gaps on the synaptonemal 

complex (arrowhead). SYCP3 is shown in red and DNA is shown in blue. Scale bar = 10 m. 

 

 

Importantly, together with the patterns of Rad51 localization, our findings indicate that failure to 

repair DSBs results in the persistence of BRCA1 and ubH2A staining on fully synapsed chromosomes 

at the diplotene stage. Therefore the association of these markers with fully synapsed chromosomes in 

this model might be a reflection of structural damage to meiotic chromosomes or alternatively, to the 

lack of establishment of an intimate synapsis between homologous chromosomes. The patterns of 

ubH2A localization observed at the pachytene and diplotene stage (Figure 6C, lower panel and 

Supplemental Figure S1) also indicates that component molecules of the PRC1 complex other than 

Cbx2 are involved in establishing histone H2A ubiquitination in the female germline. 

Finally, we set out to analyze whether the meiotic defects associated with lack of Cbx2 function 

interferes with the establishment of mature recombination nodules in mutant oocytes. The mismatch 

repair protein Mlh1 is a marker of crossover formation and is normally loaded onto mature 

recombination nodules during mid- to late pachytene stage. Analysis of chromosomal distribution 

patterns of Mlh1 (red) demonstrated that pachytene oocytes obtained from Cbx2
(XX−/−)

 mutant fetuses 

show, similar to control oocytes (arrow, upper panel), one to two Mlh1 foci on each fully synapsed 

bivalent (Figure 7, lower panel, arrow). As expected, Mlh1 foci were not detectable at asynapsed 

chromosome univalents in mutant oocytes due to lack of crossover formation (Figure 7, lower panel, 

arrowhead). These results suggest that formation of chiasmata proceeds seemingly unimpaired in most 

but not all fully synapsed homologous chromosomes, while chiasmata formation is precluded in the 

remaining asynapsed univalents in oocytes lacking Cbx2.  
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Figure 6. Activation of meiotic silencing of unsynapsed chromatin (MSUC) in Cbx2
(XX−/−)

 

oocytes. (A) Compared to oocytes isolated from control ovaries (upper panel), Cbx2
(XX−/−)

 

oocytes show prominent BRCA1 labeling (green) at a subset of synapsed chromosome 

cores (red, arrow), while the majority of incompletely synapsed bivalents show BRCA1 

with a focal distribution (arrowheads); (B) The histone modification ubH2A (red) is not 

detectable in control oocytes at the pachytene (upper panel) or the diplotene (lower panel) 

stage of meiosis; (C) In Cbx2
(XX−/−)

 mutant oocytes, ubH2A associates with the 

chromosome cores (green) of asynapsed meiotic bivalents at the pachytene stage (arrows, 

upper panel) and persists at these chromosomal domains until the diplotene stage (arrow, 

lower panel). DNA is shown in blue. Scale bars = 10 m. 
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Figure 7. Crossover formation in mutant Cbx2
(XX−/−)

 oocytes. Control oocytes (upper 

panel) as well as oocytes recovered from mutant Cbx2
(XX−/−)

 fetuses (lower panel) at 

18.5 dpc exhibit 1-2 Mlh1 foci (red) per fully synapsed chromosome bivalent (arrows). In 

contrast, asynapsed meiotic chromosomes in pachytene stage Cbx2
(XX−/−)

 oocytes lack 

Mlh1 foci due to failure to establish homologous recombination sites (arrowhead). DNA is 

shown in blue. Scale bars = 10 m. 

 

Induction of DSBs is tightly linked to histone H2A phosphorylation (H2AX) [31,37] as well as to 

the loading of recombination intermediates such as Rad51, Mre11 [47], Msh2 [48] and Dmc1 [35,49] 

at early recombination nodules. The patterns of H2AX and Rad51 staining in Cbx2
(XX−/−)

 mutant 

oocytes indicate that induction of DSBs and loading of recombination intermediates occurs normally 

in this model. However, failure to resolve DSBs results in recombination errors and structural damage 

to chromosomes and may interfere with the formation of chiasmata following homologous 

chromosome synapsis [32,36,47–52]. Therefore, the presence of such meiotic defects may predispose 

Cbx2 deficient oocytes to the formation of chromosome univalents at the diplotene stage.  

Our study has uncovered a novel role for the Polycomb group protein Cbx2 in meiosis through the 

maintenance of genome stability during this critical developmental window. Yet, precocious meiosis 

in testicular germ cells from Cbx2
(XY−/−)

 mutant fetuses with bilateral testes as well as sex reversed 

mutants exhibiting a unilateral testis grant unexpected insight into male meiosis onset. Importantly, 

our results reveal a novel role for Cbx2 protein in meiotic chromosome synapsis in 

mammalian oocytes. 

Little is known regarding the function of Polycomb group proteins in mammalian germ cells. 

Nevertheless, PcG proteins have been shown to play important roles in the maintenance of chromatin 

structure and organization during developmental transitions through the establishment of a 

characteristic and heritable epigenetic landscape. Accordingly, these highly conserved proteins 

associate in large multi-protein complexes that are capable of altering the nucleosomal composition 

through the initiation of modifications at specific histone tails, such as H3K27me3 [53,54]. Cbx2 is 

thought to act as transcriptional regulator at developmental target genes in the context of such 

complexes [29], although our understanding of the specificity of the particular targeting mechanism is 

limited. Previous studies have shown that Cbx2 expression, along with other components of PRC1 

(Bmi1 and Rae28), is detectable between day 8.5 and 18.5 dpc in whole embryo extracts and is an 
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abundant protein in the adult ovary and testis [55]. Cbx2 is known to localize to facultative 

heterochromatin of the inactive X chromosome [27,28], to centromeric heterochromatin at metaphase 

in fibroblasts [29] and to Hoechst-bright chromocenters in embryonic stem cells [28], while it is 

excluded from the nuclear macrochromatin domain forming the XY body in mouse 

spermatocytes [56].  

PcG interactions with chromatin domains have long been attributed to the chromodomain, a 

conserved feature common to all Chromobox proteins [57]. However, using bimolecular fluorescence 

complementation (BiFC) analysis, a recent study indicates that the chromodomain as well as the 

chromobox of Cbx proteins might be dispensable for DNA binding as such [28]. Interestingly, Cbx2 

differs from all other Cbx proteins by a newly identified protein domain, the AT-Hook [58]. AT-Hook 

motifs are conserved domains found in many DNA-binding proteins and are thought to enhance 

protein interactions with AT-rich chromatin domains [59]. According to this model, Cbx2 may 

promote chromatin remodeling directly through interactions with the minor groove of AT-rich satellite 

DNA sequences, while simultaneous binding of the N-terminal Cbx2 chromodomain to specific 

histone tails (H3K27me3, H3K4me3, H3K9ac) within the adjoining nucleosome could complete the 

establishment of the remodeled chromatin status [28,58].  

Importantly, chromatin remodeling processes are essential for homologous chromosome pairing, 

synapsis and proper chromosome segregation during meiosis in a wide array of organisms from  

plants [60] to mammals [15,61–65]. The phenotype observed in fetal oocytes lacking Cbx2 might 

suggest a functional role for Cbx2 in chromatin remodeling required for the establishment and/or 

repair of DSBs, homologous chromosome pairing or sister chromatid cohesion between homologous 

chromosomes. Interestingly, several chromodomain and PcG-associated proteins have previously been 

demonstrated to play a role in meiotic sister chromatid cohesion in Drosophila [66], DSB repair in 

mammals [67,68] as well as locus-specific imprinting during meiosis in fission yeast [69]. However, 

further analyses are necessary to identify the precise mechanism of action of Cbx2 in conferring 

genome stability during meiosis in the female germline. 

3. Experimental Section 

3.1. Mice 

All animal experiments were approved by the institutional animal use and care committee of the 

University of Pennsylvania according to National Institutes of Health guidelines.  

Mice heterozygous for a targeted deletion of Cbx2 (C.129P2-Cbx2
tm1Cim

/J) [23] were obtained from 

the Jackson Laboratory (Bar Harbor, ME). To obtain fetuses carrying a homozygous null mutation 

(Cbx2
(−/−)

), heterozygous mating pairs were set up and fetal gonads were collected on day 18.5 pc. 

Genotyping of Cbx2
(−/−)

 mice was conducted according to the Jackson Laboratory’s genotyping 

protocol for Cbx2
tm1Cim

, version 1.1 using the following primer pairs: “Cbx2-fwd AAC CGG AAG 

AGA GGC AAG AG”; “Cbx2-rev CCT GAA GGA GCA ACA AGA AAG”; “Neo-rev AGG TGA 

GAT GAC AGG AGA TC”. Genomic tail DNA was extracted by using the DNeasy Blood and Tissue 

Kit (QIAGEN Sciences, Germantown, MD) following manufacturer's instructions. The PCR 

conditions to determine the genotype were as follows: 94 °C for 3 min; 38 cycles of 94 °C for 30 s,  
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58 °C for 1 min and 72 °C for 1 min; followed by 72 °C for 10 min, and maintained at 4 °C until gel 

electrophoresis (Bio-Rad Laboratories, Hercules, CA). The chromosomal sex of each fetus was 

analyzed in parallel using the primer pair “Sry-fwd CTG TGT AGG ATC TTC AAT CTC T” and 

“Sry-rev GTG GTG AGA GGC ACA AGT TGG C” specifically amplifying a genomic region within 

the Y chromosomal SRY gene. 

3.2. Histology and Analysis of Meiotic Configurations in Cbx2
(−/−)

 Fetal Germ Cells 

Fetal gonads were dissected from control and Cbx2
(−/−) 

fetuses on day 18 pc and immediately fixed 

in Bouin’s solution (Sigma, St. Louis, MI). Following overnight fixation, the gonads were washed in 

PBS solution and processed for paraffin embedding and sectioning according to standard procedures. 

5 m serial sections were stained with H&E before microscopy and image acquisition. Fetal gonads 

recovered from fetuses on day 18.5 pc were also processed for the analysis of chromosome synapsis 

and meiotic recombination proteins on surface spread germ cells as described previously [70]. Briefly, 

gonads were dissected and transferred to a hypotonic solution containing 1% sodium citrate for 

20 min, before spreading of meiotic configurations onto glass slides and fixation in a solution of 1% 

paraformaldehyde, 0.1% Triton X 100. 

3.3. Immunochemistry 

Unless otherwise specified, all primary antibody incubations were conducted overnight at 4 °C. The 

extend of meiotic chromosome synapsis in control and mutant germ cells was determined by 

immunochemical detection of the lateral elements of the synaptonemal complex protein SYCP3 using 

a 1:1000 dilution of a rabbit anti-SYCP3 antibody (abcam, Cambridge, MA). An anti-phosphohistone 

H2AX (Ser-139) antibody (Upstate, Charlottesville, VA) was used at a 1:500 dilution. The type of 

meiotic configuration present in control and mutant oocytes at the pachytene stage was analyzed by 

simultaneous staining of the central element of the synaptonemal complex with a rabbit anti-SYCP1 

antibody (1:500) and a guinea pig anti-SYCP3 at a 1:250 dilution [71]. Antibodies directed against 

BRCA1 (goat polyclonal, Santa Cruz, CA) and ubH2A (mouse monoclonal, clone E6C5, Millipore, 

Billerica, MA) were used at a dilution of 1:400. The mouse monoclonal anti-Mlh1 (BD Pharmingen) 

and mouse polyclonal anti-Rad51 (Oncogene) antibodies were both used following an overnight 

incubation at 37 °C at a 1:50 dilution in combination with a rabbit anti-SYCP3 antibody (1:250). 

Immunodetection was performed using appropriate Alexa Fluor-conjugated secondary antibodies 

(Molecular Probes, Eugene, Oregon, USA) at a dilution of 1:1000 for 2 h at room temperature. 

Following immunochemistry, slides were counterstained with 7 L of antifading medium 

supplemented with DAPI (Vectashield; Vector Laboratories, Burlingame, CA). Epifluorescence 

analysis of meiotic chromosomes was conducted on a DMRX/E microscope (Leica Microsystems) 

using a 100× objective. Images were captured with a Leica DFC 350F camera using Openlab 3.1.7. 

software (PerkinElmer) and image processing was performed using Photoshop 2.0 (Adobe) for linear 

adjustments and cropping of fluorescent images. No gamma adjustments were made. 
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3.4. Fluorescence in situ Hybridization (FISH)  

The position of the sex chromosomes in control and mutant germ cells was determined by  

Immuno-FISH analysis following immunochemistry on the same slide using a FITC-conjugated X and 

a Cy3-conjugated Y chromosome paint (STARFISH, Cambio) according to manufacturer’s 

specifications. Briefly, surface spread interphase nuclei and metaphase chromosomes were denatured 

in 70% formamide (VWR International Ltd., Poole, UK) in 2 × SSC at 80 °C for 10 min and 

subsequently chilled in ice-cold 70% ethanol for 5 min. The X and Y chromosome-specific probes 

were denatured for 10 min at 85 °C, respectively, and incubated at 40 °C for 1 h. Overnight 

hybridization was carried out in a humidified chamber at 40 °C and stringency washes were conducted 

in a solution containing 50% formamide in 2 × SSC as previously described [64,72]. Co-localization 

of a fully synapsed bivalent with the signal provided by the X chromosome-specific probe was 

considered indicative of complete homologous pairing of the X bivalent in XX oocytes at the 

pachytene stage. 

3.5. Statistical Analysis  

Data presented as percentage values were analyzed by one-way analysis of variance (ANOVA) 

following arcsine transformation. Comparison of all pairs was conducted by the Tukey-Kramer HSD 

or Student’s t-test using JMP Start Statistics (SAS Institute Inc., Cary, NC). Variation among 

individual replicates is indicated as the standard deviation (s.d.). Differences were considered 

significant when P < 0.05 and are indicated by different superscripts. 

4. Conclusions 

The Cbx2 protein is expressed in the human embryonic gonadal ridge at seven weeks of gestation, 

consistent with its prominent role in early gonadal growth and differentiation [73]. Importantly, lack of 

Cbx2 function results in male to female sex reversal [18,21]. However, our study revealed major 

differences in the sex reversal phenotype according to the genetic background in mice. The milder 

phenotype observed in the BALB/C model allowed for the identification of a critical role for Cbx2 in 

germ cell development. Our studies uncovered a previously unrecognized role for Cbx2 in maintaining 

the pre-meiotic arrest in male germ cells and suggest that germ cell-specific chromatin modifications 

and structure may be an important component to confer specificity to the otherwise pleiotropic effects 

of RA on gonadal differentiation. Importantly, our studies uncovered a critical role for Cbx2 in 

homologous chromosome synapsis and chromosome stability in the female germline. These results 

may have important implications to understand the mechanisms involved in previously reported cases 

of pediatric patients exhibiting male to female sex reversal [20].  
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Supplementary Materials:  

Supplemental Figure S1. Co-localization of ubH2A (red, arrow) with fully synapsed 

chromosome bivalents (SYCP1, green) in Cbx2
(XX−/−)

 oocytes at the diplotene stage. 

Arrowhead points to faintly labeled desynapsed bivalent. Scale bar = 10µm. 

 

Supplemental Figure S2. Attenuation of the MSUC response (BRCA1, green) in 

Cbx2
(XX−/−)

 oocytes exhibiting excessive asynapsis (SYCP3, red). Scale bar = 10µm. 
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