Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (3)

Search Parameters:
Keywords = oxaliplatin-resistant (OxPt-R)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 11354 KiB  
Article
Tetraarsenic Hexoxide Enhanced the Anticancer Effects of Artemisia annua L. Polyphenols by Inducing Autophagic Cell Death and Apoptosis in Oxalplatin-Resistant HCT116 Colorectal Cancer Cells
by Eun Joo Jung, Hye Jung Kim, Sung Chul Shin, Gon Sup Kim, Jin-Myung Jung, Soon Chan Hong, Choong Won Kim and Won Sup Lee
Int. J. Mol. Sci. 2025, 26(16), 7661; https://doi.org/10.3390/ijms26167661 - 8 Aug 2025
Viewed by 146
Abstract
It was reported that polyphenols extracted from Korean Artemisia annua L. (pKAL) have higher anticancer effects in oxaliplatin-resistant (OxPt-R) HCT116 cells than in HCT116 cells. In this study, it was tested whether and how As4O6 enhances anticancer effects of pKAL [...] Read more.
It was reported that polyphenols extracted from Korean Artemisia annua L. (pKAL) have higher anticancer effects in oxaliplatin-resistant (OxPt-R) HCT116 cells than in HCT116 cells. In this study, it was tested whether and how As4O6 enhances anticancer effects of pKAL in HCT116 and HCT116-OxPt-R colorectal cancer cells. The CCK-8 assay, phase-contrast microscopy, and colony formation assay revealed that As4O6 enhanced anticancer effects of pKAL, with induction of nuclear deformity and intracytoplasmic vesicle formation in both cells. Western blot analysis revealed that co-treatment with As4O6 and pKAL significantly decreased the expression of NF-kB, EGFR, cyclin D1, CD44, and β-catenin, and upregulated the expression of p62 and LC3B in both cells. It also induced the activation of caspase-8 and γ-H2AX and the cleavage of β-catenin, PARP1, lamin A/C, and p62. These phenomena were inhibited by wortmannin, and further suppressed by co-treatment of wortmannin with an ROS inhibitor, N-acetyl cysteine. This study suggests that As4O6 enhanced the anticancer effects of pKAL by inducing autophagic cell death accompanied by apoptosis in both parental HCT116 and HCT116-OxPt-R cells. It also suggests that ROS generation and the downregulation of AKT, NF-κB p65, cyclin D1, EGFR, and β-catenin may play an important role in the As4O6-enhanced anticancer effect of pKAL. Full article
(This article belongs to the Special Issue Enhanced Anticancer Properties of Natural Products)
Show Figures

Figure 1

19 pages, 9027 KiB  
Article
Artemisia annua L. Polyphenols Enhance the Anticancer Effect of β-Lapachone in Oxaliplatin-Resistant HCT116 Colorectal Cancer Cells
by Eun Joo Jung, Hye Jung Kim, Sung Chul Shin, Gon Sup Kim, Jin-Myung Jung, Soon Chan Hong, Choong Won Kim and Won Sup Lee
Int. J. Mol. Sci. 2023, 24(24), 17505; https://doi.org/10.3390/ijms242417505 - 15 Dec 2023
Cited by 2 | Viewed by 2228
Abstract
Recent studies suggest that the anticancer activity of β-lapachone (β-Lap) could be improved by different types of bioactive phytochemicals. The aim of this study was to elucidate how the anticancer effect of β-Lap is regulated by polyphenols extracted from Korean Artemisia annua L. [...] Read more.
Recent studies suggest that the anticancer activity of β-lapachone (β-Lap) could be improved by different types of bioactive phytochemicals. The aim of this study was to elucidate how the anticancer effect of β-Lap is regulated by polyphenols extracted from Korean Artemisia annua L. (pKAL) in parental HCT116 and oxaliplatin-resistant (OxPt-R) HCT116 colorectal cancer cells. Here, we show that the anticancer effect of β-Lap is more enhanced by pKAL in HCT116-OxPt-R cells than in HCT116 cells via a CCK-8 assay, Western blot, and phase-contrast microscopy analysis of hematoxylin-stained cells. This phenomenon was associated with the suppression of OxPt-R-related upregulated proteins including p53 and β-catenin, the downregulation of cell survival proteins including TERT, CD44, and EGFR, and the upregulation of cleaved HSP90, γ-H2AX, and LC3B-I/II. A bioinformatics analysis of 21 proteins regulated by combined treatment of pKAL and β-Lap in HCT116-OxPt-R cells showed that the enhanced anticancer effect of β-Lap by pKAL was related to the inhibition of negative regulation of apoptotic process and the induction of DNA damage through TERT, CD44, and EGFR-mediated multiple signaling networks. Our results suggest that the combination of pKAL and β-Lap could be used as a new therapy with low toxicity to overcome the OxPt-R that occurred in various OxPt-containing cancer treatments. Full article
(This article belongs to the Special Issue Natural Product Chemistry and Biological Research)
Show Figures

Figure 1

18 pages, 4358 KiB  
Article
β-Lapachone Exerts Anticancer Effects by Downregulating p53, Lys-Acetylated Proteins, TrkA, p38 MAPK, SOD1, Caspase-2, CD44 and NPM in Oxaliplatin-Resistant HCT116 Colorectal Cancer Cells
by Eun Joo Jung, Hye Jung Kim, Sung Chul Shin, Gon Sup Kim, Jin-Myung Jung, Soon Chan Hong, Choong Won Kim and Won Sup Lee
Int. J. Mol. Sci. 2023, 24(12), 9867; https://doi.org/10.3390/ijms24129867 - 7 Jun 2023
Cited by 6 | Viewed by 2974
Abstract
β-lapachone (β-Lap), a topoisomerase inhibitor, is a naturally occurring ortho-naphthoquinone phytochemical and is involved in drug resistance mechanisms. Oxaliplatin (OxPt) is a commonly used chemotherapeutic drug for metastatic colorectal cancer, and OxPt-induced drug resistance remains to be solved to increase chances of [...] Read more.
β-lapachone (β-Lap), a topoisomerase inhibitor, is a naturally occurring ortho-naphthoquinone phytochemical and is involved in drug resistance mechanisms. Oxaliplatin (OxPt) is a commonly used chemotherapeutic drug for metastatic colorectal cancer, and OxPt-induced drug resistance remains to be solved to increase chances of successful therapy. To reveal the novel role of β-Lap associated with OxPt resistance, 5 μM OxPt-resistant HCT116 cells (HCT116-OxPt-R) were generated and characterized via hematoxylin staining, a CCK-8 assay and Western blot analysis. HCT116-OxPt-R cells were shown to have OxPt-specific resistance, increased aggresomes, upregulated p53 and downregulated caspase-9 and XIAP. Through signaling explorer antibody array, nucleophosmin (NPM), CD37, Nkx-2.5, SOD1, H2B, calreticulin, p38 MAPK, caspase-2, cadherin-9, MMP23B, ACOT2, Lys-acetylated proteins, COL3A1, TrkA, MPS-1, CD44, ITGA5, claudin-3, parkin and ACTG2 were identified as OxPt-R-related proteins due to a more than two-fold alteration in protein status. Gene ontology analysis suggested that TrkA, Nkx-2.5 and SOD1 were related to certain aggresomes produced in HCT116-OxPt-R cells. Moreover, β-Lap exerted more cytotoxicity and morphological changes in HCT116-OxPt-R cells than in HCT116 cells through the downregulation of p53, Lys-acetylated proteins, TrkA, p38 MAPK, SOD1, caspase-2, CD44 and NPM. Our results indicate that β-Lap could be used as an alternative drug to overcome the upregulated p53-containing OxPt-R caused by various OxPt-containing chemotherapies. Full article
(This article belongs to the Special Issue Phytochemicals and Cancer)
Show Figures

Figure 1

Back to TopTop