Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = oil-born yeasts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 772 KiB  
Article
Plant Extract and Essential Oil Application against Food-Borne Pathogens in Raw Pork Meat
by Ioanna Mantzourani, Maria Daoutidou, Marilena Dasenaki, Anastasios Nikolaou, Athanasios Alexopoulos, Antonia Terpou, Nikolaos Thomaidis and Stavros Plessas
Foods 2022, 11(6), 861; https://doi.org/10.3390/foods11060861 - 18 Mar 2022
Cited by 18 | Viewed by 5519
Abstract
Herbal and plant extracts are being applied for a wide range of foods against different types of food-borne pathogens. In the present study, ethanolic and aqueous extracts (2% w/v) from cranberry (Vaccinium macrocarpon) and pomegranate (Punica granatum [...] Read more.
Herbal and plant extracts are being applied for a wide range of foods against different types of food-borne pathogens. In the present study, ethanolic and aqueous extracts (2% w/v) from cranberry (Vaccinium macrocarpon) and pomegranate (Punica granatum L.) plants were applied alone or in combination with two essential oils (thyme and oregano in a concentration of 0.150 μg/g) in pork meatballs and their antimicrobial activity was estimated. The extracts exhibited promising results (aqueous and ethanolic extracts of pomegranate and cranberry in a food-compatible concentration of 2% w/v) were applied to raw pork meatball production and their antimicrobial activity was recorded versus Enterobacteriaceae, total mesophilic bacteria, yeasts/molds, Staphylococcus spp., Pseudomonas spp. and lactic acid bacteria (LAB). The outcome demonstrated that meatballs containing aqueous extracts of pomegranate were more resistant to spoilage compared to all the other samples since they were preserved for more days. The chemical profiles of plant extracts were determined through LC-QTOF/MS and the chemical composition of the essential oils applied was determined with the use of GC/MS in order to identify the substances involved in the observed antimicrobial activity. Phenolic acids (quinic acid, chlorogenic acid), monoterpenes (p-cymene, carvacrol, thymol, limonene), organic acids (citric acid) and phenols were the main constituents found in the plant extracts and essential oils applied. These extracts of plant origin could be used as natural preservatives in meat products, even in low concentrations. Full article
Show Figures

Figure 1

13 pages, 547 KiB  
Review
Virgin Olive Oil Quality Is Affected by the Microbiota that Comprise the Biotic Fraction of the Oil
by Biagi Angelo Zullo and Gino Ciafardini
Microorganisms 2020, 8(5), 663; https://doi.org/10.3390/microorganisms8050663 - 1 May 2020
Cited by 12 | Viewed by 3721
Abstract
This review summarizes the current knowledge on the effects of oil-borne yeasts on the physicochemical, sensorial, and health-related characteristics of virgin olive oil (VOO) during storage. Bacteria, yeasts, and molds constitute the biotic fraction of freshly produced VOO. During storage, the bacteria and [...] Read more.
This review summarizes the current knowledge on the effects of oil-borne yeasts on the physicochemical, sensorial, and health-related characteristics of virgin olive oil (VOO) during storage. Bacteria, yeasts, and molds constitute the biotic fraction of freshly produced VOO. During storage, the bacteria and molds often die after a short period, while the yeasts survive and condition the quality of VOO. To date, approximately twenty-four yeast species have been isolated from different types of olive oil and its by-products, and seven of these species have been identified as new species. The activity of some yeasts of the biotic fraction of olive oil improves the sensorial characteristics of VOO. Some yeasts can also worsen the quality of the product by allowing the appearance of defects, oxidation of polar phenols, and triacylglycerol hydrolysis. Some yeast species of VOO show in vitro beneficial health effects, such as probiotic and antioxidant activities. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

16 pages, 276 KiB  
Article
Differential Microbial Composition of Monovarietal and Blended Extra Virgin Olive Oils Determines Oil Quality during Storage
by Biagi Angelo Zullo and Gino Ciafardini
Microorganisms 2020, 8(3), 402; https://doi.org/10.3390/microorganisms8030402 - 13 Mar 2020
Cited by 11 | Viewed by 2221
Abstract
Extra virgin olive oil (EVOO) contains a biotic fraction, which is characterized by various microorganisms, including yeasts. The colonization of microorganisms in the freshly produced EVOO is determined by the physicochemical characteristics of the product. The production of blended EVOO with balanced taste, [...] Read more.
Extra virgin olive oil (EVOO) contains a biotic fraction, which is characterized by various microorganisms, including yeasts. The colonization of microorganisms in the freshly produced EVOO is determined by the physicochemical characteristics of the product. The production of blended EVOO with balanced taste, which is obtained by blending several monovarietal EVOOs, modifies the original microbiota of each oil due to the differential physico-chemical characteristics of the blended oil. This study aimed to evaluate the effect of microbial composition on the stability of the quality indices of the monovarietal and blended EVOOs derived from Leccino, Peranzana, Coratina, and Ravece olive varieties after six months of storage. The yeasts survived only in the monovarietal EVOOs during six months of storage. Barnettozyma californica, Candida adriatica, Candida diddensiae, and Yamadazyma terventina were the predominant yeast species, whose abundance varied in the four monovarietal EVOOs. However, the number of yeasts markedly decreased during the first three months of storage in all blended EVOOs. Thus, all blended EVOOs were more stable than the monovarietal EVOOs as the abundance and activity of microorganisms were limited during storage. Full article
(This article belongs to the Section Food Microbiology)
12 pages, 1293 KiB  
Article
Effect of Clove and Thyme Essential Oils on Candida Biofilm Formation and the Oil Distribution in Yeast Cells
by Katarzyna Rajkowska, Paulina Nowicka-Krawczyk and Alina Kunicka-Styczyńska
Molecules 2019, 24(10), 1954; https://doi.org/10.3390/molecules24101954 - 21 May 2019
Cited by 55 | Viewed by 7447
Abstract
Candida biofilm structure is particularly difficult to eradicate, since biofilm is much more resistant to antifungal agents than planktonic cells. In this context, a more effective strategy seems to be the prevention of biofilm formation than its eradication. The aim of the study [...] Read more.
Candida biofilm structure is particularly difficult to eradicate, since biofilm is much more resistant to antifungal agents than planktonic cells. In this context, a more effective strategy seems to be the prevention of biofilm formation than its eradication. The aim of the study was to examine whether the process of initial colonization of materials (glass, polyethylene terephthalate, polypropylene) by food-borne Candida sp. can be impeded by clove and thyme essential oils, used at their minimal inhibitory concentrations. In the presence of clove oil, 68.4–84.2% of the yeast tested showed a statistically significant reduction in biofilm formation, depending on the material. After treatment with thyme oil, statistically significant decrease in biofilm cell numbers was observed for 63.2–73.7% of yeasts. Confocal laser scanning microscopy showed diverse compounds of clove and thyme oils that were disparately located in C. albicans cell, on a cell wall and a cell membrane, in cytoplasm, and in vacuoles, depicting the multidirectional action of essential oils. However, essential oils that were used in sub-inhibitory concentration were sequestrated in the yeast vacuoles, which indicate the activation of Candida defense mechanisms by cell detoxification. Clove and thyme essential oils due to their anti-biofilm activity can be efficiently used in the prevention of the tested abiotic surfaces colonization by Candida sp. Full article
(This article belongs to the Special Issue Biological Activities of Essential Oils)
Show Figures

Graphical abstract

Back to TopTop