Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = oil palm seedlings nursery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1537 KiB  
Article
The Potential Benefits of Palm Oil Waste-Derived Compost in Embracing the Circular Economy
by Geok Wee Lau, Patricia J. H. King, John Keen Chubo, Ik Chian King, Kian Huat Ong, Zahora Ismail, Tunung Robin and Imran Haider Shamsi
Agronomy 2024, 14(11), 2517; https://doi.org/10.3390/agronomy14112517 - 26 Oct 2024
Cited by 2 | Viewed by 3057
Abstract
The environmental impact of peat extraction in plant nurseries requires urgent attention due to climate change and habitat destruction. Substituting peat moss with compost derived from palm oil waste in oil palm nurseries presents a viable solution. However, the challenges in its implementation [...] Read more.
The environmental impact of peat extraction in plant nurseries requires urgent attention due to climate change and habitat destruction. Substituting peat moss with compost derived from palm oil waste in oil palm nurseries presents a viable solution. However, the challenges in its implementation must be considered. This research focuses on optimizing composting conditions for palm oil waste and examines the impact of the compost on soil quality, nutrient availability, and seedling growth. Measurements such as the culling rate, plant height, leaf length, and chlorophyll content were taken to assess seedling growth in nurseries. The compost was also tested as a soil amendment for 5-year-old palm trees, with foliar analysis conducted to evaluate the nutrient assimilation. The results show that optimized compost significantly enhanced the seedling growth by 20–50%, evidenced by the increased plant height, longer leaf length, and higher chlorophyll content. Additionally, the foliar analysis demonstrated an improvement of 5–15% in the nutrient assimilation in the 5-year-old palm trees. This research highlights the potential of optimizing oil palm waste composting for sustainable planting media in nurseries, mitigating environmental impacts and promoting productivity in oil palm plantations. Adopting this circular economy model can address waste management challenges while ensuring a resilient and sustainable approach in the palm oil industry. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

17 pages, 4773 KiB  
Article
Drought Resilience in Oil Palm Cultivars: A Multidimensional Analysis of Diagnostic Variables
by Cristihian Bayona-Rodríguez and Hernán Mauricio Romero
Plants 2024, 13(12), 1598; https://doi.org/10.3390/plants13121598 - 8 Jun 2024
Cited by 4 | Viewed by 2474
Abstract
Water scarcity is a significant constraint on agricultural practices, particularly in Colombia, where numerous palm cultivators rely on rainfed systems for their plantations. Identifying drought-tolerant cultivars becomes pivotal to mitigating the detrimental impacts of water stress on growth and productivity. This study scrutinizes [...] Read more.
Water scarcity is a significant constraint on agricultural practices, particularly in Colombia, where numerous palm cultivators rely on rainfed systems for their plantations. Identifying drought-tolerant cultivars becomes pivotal to mitigating the detrimental impacts of water stress on growth and productivity. This study scrutinizes the variability in drought responses of growth, physiological, and biochemical variables integral to selecting drought-tolerant oil palm cultivars in the nursery. A comprehensive dataset was compiled by subjecting seedlings of eleven cultivars to four soil water potentials (−0.05 MPa, −0.5 MPa, −1 MPa, and −2 MPa) over 60 days. This dataset encompasses growth attributes, photosynthetic parameters like maximum quantum yield and electron transfer rate, gas exchange (photosynthesis, transpiration, and water use efficiency), levels of osmolytes (proline and sugars), abscisic acid (ABA) content, as well as antioxidant-related enzymes, including peroxidase, catalase, ascorbate peroxidase, glutathione reductase, and superoxide dismutase. Principal Component Analysis (PCA) elucidated two principal components that account for approximately 65% of the cumulative variance. Noteworthy enzyme activity was detected for glutathione reductase and ascorbate peroxidase. When juxtaposed with the other evaluated cultivars, one of the cultivars (IRHO 7001) exhibited the most robust response to water deficit. The six characteristics evaluated (photosynthesis, predawn water potential, proline, transpiration, catalase activity, sugars) were determined to be the most discriminant when selecting palm oil cultivars with tolerance to water deficit. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

11 pages, 6434 KiB  
Article
Changes in the Root Architecture of Oil Palm Seedlings in Response to Nitrogen Starvation
by Marlon De la Peña, Rodrigo Ruiz-Romero, Laura Isabel Castro-Arza and Hernán Mauricio Romero
Agronomy 2024, 14(3), 409; https://doi.org/10.3390/agronomy14030409 - 20 Feb 2024
Cited by 3 | Viewed by 2422
Abstract
Oil palm (Elaeis guineensis) is a widely cultivated crop known for its high oil yield. It is cultivated extensively across tropical regions, notably in Southeast Asia, Africa, and Latin America. It plays a vital role in global vegetable oil supply, meeting [...] Read more.
Oil palm (Elaeis guineensis) is a widely cultivated crop known for its high oil yield. It is cultivated extensively across tropical regions, notably in Southeast Asia, Africa, and Latin America. It plays a vital role in global vegetable oil supply, meeting approximately 35% of the world’s demand. However, the expansion of oil palm plantations often involves the utilization of degraded soils where nutrient availability, particularly nitrogen, is limited, posing challenges to plant growth and productivity. Roots are crucial in responding to nitrogen deficiency by adjusting their growth and distribution; however, research on root system distribution patterns in oil palm still needs to be completed. This study analyzes the root system architecture using RhizoVision Explorer, a 2D root image processing software while assessing its relationship with nitrogen availability across two commercial cultivars: Deli × La Mé of African oil palm (Elaeis guineensis) and the interspecific hybrid O×G Coari × La Mé. Our findings reveal significant associations between eight root traits in oil palm seedlings and treatments with and without nitrogen availability. Notably, total root morphology (length, surface area, and volume), rotation angle, solidity, and hole characteristics decreased under nitrogen deprivation, whereas surface angle frequency increased. We highlight the variability of these traits across cultivars, suggesting genetic dependence and potential utility in breeding programs. Moreover, interactions observed in primary root morphology and hole size indicate greater differences between control and nitrogen-treated groups in C × LM than in D × LM cultivars. On the other hand, cultivar differences, regardless of nitrogen availability, influenced lateral root morphology, while nitrogen availability, irrespective of cultivar, affected inclined angle frequency. Significant differences were observed in growth and development parameters such as root and shoot biomass, root-to-shoot ratio, and leaf emission numbers between nitrogen-optimal and nitrogen-starved conditions. Nitrogen significantly affects root architecture and plant growth in oil palm, particularly in the C × LM cultivar during the nursery stage. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

16 pages, 9154 KiB  
Article
Automatic Disease Detection of Basal Stem Rot Using Deep Learning and Hyperspectral Imaging
by Lai Zhi Yong, Siti Khairunniza-Bejo, Mahirah Jahari and Farrah Melissa Muharam
Agriculture 2023, 13(1), 69; https://doi.org/10.3390/agriculture13010069 - 26 Dec 2022
Cited by 28 | Viewed by 4075
Abstract
Basal Stem Rot (BSR), a disease caused by Ganoderma boninense (G. boninense), has posed a significant concern for the oil palm industry, particularly in Southeast Asia, as it has the potential to cause substantial economic losses. The breeding programme is currently [...] Read more.
Basal Stem Rot (BSR), a disease caused by Ganoderma boninense (G. boninense), has posed a significant concern for the oil palm industry, particularly in Southeast Asia, as it has the potential to cause substantial economic losses. The breeding programme is currently searching for G. boninense-resistant planting materials, which has necessitated intense manual screening in the nursery to track the progression of disease development in response to different treatments. The combination of hyperspectral image and machine learning approaches has a high detection potential for BSR. However, manual feature selection is still required to construct a detection model. Therefore, the objective of this study is to establish an automatic BSR detection at the seedling stage using a pre-trained deep learning model and hyperspectral images. The aerial view image of an oil palm seedling is divided into three regions in order to determine if there is any substantial spectral change across leaf positions. To investigate if the background images affect the performance of the detection, segmented images of the plant seedling have been automatically generated using a Mask Region-based Convolutional Neural Network (RCNN). Consequently, three models are utilised to detect BSR: a convolutional neural network that is 16 layers deep (VGG16) model trained on a segmented image; and VGG16 and Mask RCNN models both trained on the original images. The results indicate that the VGG16 model trained with the original images at 938 nm wavelength performed the best in terms of accuracy (91.93%), precision (94.32%), recall (89.26%), and F1 score (91.72%). This method revealed that users may detect BSR automatically without having to manually extract image attributes before detection. Full article
(This article belongs to the Special Issue Digital Innovations in Agriculture)
Show Figures

Figure 1

14 pages, 7531 KiB  
Article
Ganoderma zonatum Is the Causal Agent of Basal Stem Rot in Oil Palm in Colombia
by Sandra Yulieth Castillo, María Camila Rodríguez, Luis Felipe González, León Franky Zúñiga, Yuri Adriana Mestizo, Héctor Camilo Medina, Carmenza Montoya, Anuar Morales, Hernán Mauricio Romero and Greicy Andrea Sarria
J. Fungi 2022, 8(3), 230; https://doi.org/10.3390/jof8030230 - 26 Feb 2022
Cited by 14 | Viewed by 5199
Abstract
Basal stem rot (BSR), caused by Ganoderma spp., is one of the most important emerging oil palm diseases in Colombia, and is restricted to two oil palm production areas in the country. To identify the causal agent of the disease, basidiocarp of oil [...] Read more.
Basal stem rot (BSR), caused by Ganoderma spp., is one of the most important emerging oil palm diseases in Colombia, and is restricted to two oil palm production areas in the country. To identify the causal agent of the disease, basidiocarp of oil palms affected by BSR were used to prepare isolates, and their pathogenicity was then assessed in pre-nursery plants. Four-month-old oil palm seedlings were inoculated with rubber wood (Hevea brasiliensis) blocks colonized with dikaryotic mycelia of Ganoderma. The incidence, severity, and symptoms of the pathogen were assessed. A multiregional analysis (ITS, rpb2, and tef1-α) was carried out to identify the isolates; all isolates were determined to be Ganoderma zonatum. Phylogenetic analyses with the three regions yielded concordant phylogenetic information and supported the distinction of the isolates with high bootstrap support. Seven isolates (CPBsZN-01-29, CPBsZN-02-30, CPBsZN-03-31, CPBsZN-04-34, CPBsZN-05-35, CPBsZN-06-36, and CPBsZN-07-38) were pathogenic in oil palm, with incidences greater than 90% and a maximum severity of 34%, and the highest severity index was found in isolates CPBsZN-03-31, CPBsZN-04-34, and CPBsZN-06-36. The pathogen was recovered from inoculated oil palms in all cases. This study reveals the pathogenic association of Ganoderma zonatum with BSR in Colombia. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

16 pages, 4572 KiB  
Article
Beneficial Effects of Silicon Fertilizer on Growth and Physiological Responses in Oil Palm
by Saowapa Duangpan, Yanipha Tongchu, Tajamul Hussain, Theera Eksomtramage and Jumpen Onthong
Agronomy 2022, 12(2), 413; https://doi.org/10.3390/agronomy12020413 - 7 Feb 2022
Cited by 18 | Viewed by 5398
Abstract
Vigorous and well-established nursery seedlings are an important component of sustainable oil palm production. We postulated that Si fertilization at the seedling stage could help to achieve improved performance of oil palm seedlings leading to healthy and vigorous nursery establishment. In this study, [...] Read more.
Vigorous and well-established nursery seedlings are an important component of sustainable oil palm production. We postulated that Si fertilization at the seedling stage could help to achieve improved performance of oil palm seedlings leading to healthy and vigorous nursery establishment. In this study, we evaluated the growth and physiological responses of oil palm Tenera hybrid seedlings under three Si fertilization treatments and a control including (i) 0 g Ca2SiO4 (T0), (ii) 0.5 g Ca2SiO4 (T1), (iii) 3.5 g Ca2SiO4 (T2), and (iv) 7.0 g Ca2SiO4 (T3) per plant per month. Ca2SiO4 was used as the Si fertilizer source and was applied for four consecutive months. Nondestructive data including stem diameter, plant height, leaf length, photosynthetic rate, leaf angle, and leaf thickness and destructive data including leaf, stem, and root fresh weight and dry weight, as well as chlorophyll a, Si, and nitrogen contents, were recorded before treatment (0 DAT), as well as 60 (60 DAT) and 120 days after treatment (120 DAT). Results indicated that Si fertilization enhanced Si accumulation in oil palm seedlings, and maximum accumulation was observed in the aerial parts especially the leaves with the highest accumulation of 0.89 % dry weight at T3. Higher Si accumulation stimulated the growth of seedlings; a total fresh weight of 834.28 g and a total dry weight of 194.34 g were observed at T3. Chlorophyll a content (0.83 gm−2) and net photosynthetic rate (4.98 µM CO2·m−2·s−1) were also observed at T3. Leaf morphology was not significantly influenced under Si fertilization, whereas the nitrogen content of seedlings was significantly increased. Correlation analysis revealed a highly significant and positive association among Si accumulation, chlorophyll a content, photosynthetic rate, total fresh weight, total dry weight, and nitrogen content of seedlings, indicating that Si fertilization enhanced the performance of these attributes. On the basis of the research evidence, it was concluded that Si fertilization should be considered for improved nutrient management for oil palm seedling and nursery production. Full article
Show Figures

Figure 1

16 pages, 2529 KiB  
Article
The Effects of Biofertilizers on Growth, Soil Fertility, and Nutrients Uptake of Oil Palm (Elaeis Guineensis) under Greenhouse Conditions
by Aaronn Avit Ajeng, Rosazlin Abdullah, Marlinda Abdul Malek, Kit Wayne Chew, Yeek-Chia Ho, Tau Chuan Ling, Beng Fye Lau and Pau Loke Show
Processes 2020, 8(12), 1681; https://doi.org/10.3390/pr8121681 - 19 Dec 2020
Cited by 48 | Viewed by 10921
Abstract
The full dependency on chemical fertilizers in oil palm plantation poses an enormous threat to the ecosystem through the degradation of soil and water quality through leaching to the groundwater and contaminating the river. A greenhouse study was conducted to test the effect [...] Read more.
The full dependency on chemical fertilizers in oil palm plantation poses an enormous threat to the ecosystem through the degradation of soil and water quality through leaching to the groundwater and contaminating the river. A greenhouse study was conducted to test the effect of combinations of biofertilizers with chemical fertilizer focusing on the soil fertility, nutrient uptake, and the growth performance of oil palms seedlings. Soils used were histosol, spodosol, oxisol, and ultisol. The three treatments were T1: 100% chemical fertilizer (NPK 12:12:17), T2: 70% chemical fertilizer + 30% biofertilizer A (CF + BFA), and T3: 70% + 30% biofertilizer B (CF + BFB). T2 and T3, respectively increased the growth of oil palm seedlings and soil nutrient status but seedlings in oxisol and ultisol under T3 had the highest in almost all parameters due to the abundance of more efficient PGPR. The height of seedlings in ultisol under T3 was 22% and 17% more than T2 and T1 respectively, with enhanced girth size, chlorophyll content, with improved nutrient uptake by the seedlings. Histosol across all treatments has a high macronutrient content suggesting that the rate of chemical fertilizer application should be revised when planting using the particular soil. With the reduction of chemical fertilizer by 25%, the combined treatment with biofertilizers could enhance the growth of the oil palm seedlings and soil nutrient properties regardless of the soil orders. Full article
(This article belongs to the Special Issue Biotechnology for Sustainability and Social Well Being)
Show Figures

Figure 1

20 pages, 3195 KiB  
Article
Biocontrol and Plant-Growth-Promoting Traits of Talaromyces apiculatus and Clonostachys rosea Consortium against Ganoderma Basal Stem Rot Disease of Oil Palm
by Yit Kheng Goh, Nurul Fadhilah Marzuki, Tuan Nur Fatihah Tuan Pa, Teik-Khiang Goh, Zeng Seng Kee, You Keng Goh, Mohd Termizi Yusof, Vladimir Vujanovic and Kah Joo Goh
Microorganisms 2020, 8(8), 1138; https://doi.org/10.3390/microorganisms8081138 - 28 Jul 2020
Cited by 33 | Viewed by 5387
Abstract
Basal stem rot (BSR) disease caused by Ganoderma boninense basidiomycetous fungus is the most economically important disease in oil palms in South East Asia. Unfortunately, there is no single most effective control measure available. Tremendous efforts have been directed in incorporation of environmentally [...] Read more.
Basal stem rot (BSR) disease caused by Ganoderma boninense basidiomycetous fungus is the most economically important disease in oil palms in South East Asia. Unfortunately, there is no single most effective control measure available. Tremendous efforts have been directed in incorporation of environmentally friendly biocontrol approaches in minimizing BSR disease. This study investigated the performance of two potential biocontrol agents (BCAs), AAT0115 and AAB0114 strains recovered from oil palm on suppression of BSR in planta, and also assessed their plant-growth-promoting (PGP) performance. ITS rRNA-sequence phylogeny discriminated the two ascomycetous Talaromyces apiculatus (Ta) AT0115 and Clonostachys rosea (Cr) AAB0114 biocontrol species with PGP characteristics. In vitro studies have demonstrated both Ta and Cr are capable of reducing linear mycelial growth of G. boninense. Inoculation of individual Cr and Ta—as well as Cr+Ta consortium—induced a significant increment in leaf area and bole girth of oil-palm seedlings five months post-inoculation (MPI) under nursery conditions. At five months post-inoculation, shoot and root biomass, and nutrient contents (nitrogen, phosphorus, potassium, calcium, magnesium and boron) were significantly higher in Ta-inoculated seedlings compared to control treated with non-Ta-inoculated maize. Chlorophyll and carotenoids contents in rapidly growing oil-palm seedlings challenged with Cr, Ta or a combination of both were not negatively affected. Cr, Ta and Cr+Ta consortium treated seedlings had 4.9–60% BSR disease reduction compared to the untreated control. Co-inoculation of Cr and Ta resulted in increased BSR control efficiencies by 18–26% (compared with Cr only) and 48–55% (compared with Ta only). Collectively, Cr and Ta, either individually or in consortium showed potential as BSR biocontrol agents while also possess PGP traits in oil palm. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Graphical abstract

Back to TopTop